已知:如圖,在⊙O中,弦AB=CD.
求證:(1)弧AC=弧BD;
(2)∠AOC=∠BOD.

解:(1)∵在⊙O中,弦AB=CD,
∴弧AB=弧CD,
∵弧BC=弧CB,
∴弧AC=弧BD;

(2)∵弧AC=弧BD,
∴∠AOC=∠BOD.
分析:(1)根據(jù)圓心角、弧、弦的關(guān)系定理,要證弧AC=弧BD,只需證弧AB=弧CD,由于弦AB=CD,所以弧AB=弧CD.
(2)根據(jù)圓心角、弧、弦的關(guān)系定理,由(1)知,∠AOC=∠BOD.
點(diǎn)評:本題運(yùn)用圓心角、弧、弦的關(guān)系定理解題,在同圓或等圓中,如果①兩個圓心角,②兩條弦,③兩條弧,④兩條弦的弦心距中,有任意一組量相等,其他各組量都相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、已知:如圖,在?ABCD中,對角線AC交BD于點(diǎn)O,四邊形AODE是平行四邊形.求證:四邊形ABOE、四邊形DCOE都是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、已知:如圖,在△ABC中,AB=AC,點(diǎn)D,E在邊BC上,且BD=CE.
(1)找出圖中所有的互相全等的三角形;
(2)求證:∠ADE=AED.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)計算:(
2
-1)-1+
8
-6sin45°+(-1)2011

(2)先化簡,再求值:
x2-2xy+y2
x2-xy
÷(
x
y
-
y
x
)
,其中x=
2
-1,y=1

(3)如圖,已知:如圖,在?ABCD中,BE=DF.求證:△ABE≌△CDF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,在△ABC中,AB=AC,點(diǎn)P是△ABC的中線AD上的任意一點(diǎn)(不與點(diǎn)A重合.將線段AP繞點(diǎn)A逆時針旋轉(zhuǎn)到AQ,使∠PAQ=∠BAC,連接BP,CQ
(1)求證:BP=CQ.
(2)設(shè)直線BP與直線CQ相交于點(diǎn)E,∠BAC=α,∠BEC=β,
①若點(diǎn)P在線段AD上移動(不與點(diǎn)A重合),則“α與β之間有怎樣的數(shù)量關(guān)系?并說明理由.
②若點(diǎn)P在直線AD上移動(不與點(diǎn)A重合).則α與β之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•密云縣一模)已知:如圖,在△ABC中,∠A=∠B=30°,D是AB 邊上一點(diǎn),以AD為直徑作⊙O恰過點(diǎn)C.
(1)求證:BC所在直線是⊙O的切線;
(2)若AD=2
3
,求弦AC的長.

查看答案和解析>>

同步練習(xí)冊答案