【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)yx2mxn的圖像與坐標(biāo)軸交于A、B、C三點(diǎn),其中A點(diǎn)的坐標(biāo)為、點(diǎn)B的坐標(biāo)是

(1)求該二次函數(shù)的表達(dá)式及點(diǎn)C的坐標(biāo);

(2)若點(diǎn)D的坐標(biāo)是,點(diǎn)F為該二次函數(shù)在第四象限內(nèi)圖像上的動(dòng)點(diǎn),連接CD、CF,以CD、CF為鄰邊作平行四邊形CDEF.設(shè)平行四邊形CDEF的面積為S

①求S的最大值;

②在點(diǎn)F的運(yùn)動(dòng)過(guò)程中,當(dāng)點(diǎn)E落在該二次函數(shù)圖像上時(shí),請(qǐng)求出點(diǎn)E的坐標(biāo).

【答案】1,(8,0);(2)①50;②

【解析】

1)把A點(diǎn)和B點(diǎn)坐標(biāo)代入二次函數(shù)yx2―mx―n得到關(guān)于bc的方程組,解方程組求出b、c即可得到拋物線的解析式,然后計(jì)算當(dāng)y=0時(shí),對(duì)應(yīng)的x的值即可得到C的坐標(biāo);

2)①連接OF、FD,如圖設(shè)F(t,),利用S=2SCDF=2(S四邊形CFDO-SCDO),利用分割法求出S四邊形CFDO,利用三角形面積公式求出SCDO,得到S=,利用二次函數(shù)的性質(zhì)得到當(dāng)t=3時(shí),S有最大值,最大值為50;

②由于四邊形CDEF是平行四邊形,得到CDEF,CD=EF,利用C點(diǎn)和D點(diǎn)的坐標(biāo)特征可判斷點(diǎn)C向下平移4個(gè)單位,再向左平移8個(gè)單位得到了點(diǎn)D,則點(diǎn)F向下平移4個(gè)單位,再向左平移8個(gè)單位得到了點(diǎn)E,即點(diǎn)E(t-8,),然后把點(diǎn)E(t-8,)代入拋物線解析式得到關(guān)于t的方程,再解方程求出t后即可.

解:(1)二次函數(shù)yx2―mx―n的圖象過(guò)A(0-8),B(-4,0)

解得

∴二次函數(shù)解析式為

y=0,解得

∴點(diǎn)C的坐標(biāo)為(8,0)

2)①連接OF、FD,如圖設(shè)F(t,)

∵四邊形CDEF是平行四邊形

S=2SCDF=2(S四邊形CFDO-SCDO)

S四邊形CFDO=SOCF+SODF

SCDO=×8×4=16

S=2SCDF=2(-16)= =

當(dāng)t=3時(shí),S有最大值,最大值為50

②∵四邊形CDEF是平行四邊形

CDEF,CD=EF

∵點(diǎn)C向下平移4個(gè)單位,再向左平移8個(gè)單位得到了點(diǎn)D

∴點(diǎn)F向下平移4個(gè)單位,再向左平移8個(gè)單位得到了點(diǎn)E

即點(diǎn)E(t-8,),又點(diǎn)E在拋物線上

=(t-8)2-(t-8)-8

解得t=7

E(-1,)

故答案為(1,(8,0);(2)①50;②E(-1,)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,的外接圓,為直徑,的平分線交O于點(diǎn)D,過(guò)點(diǎn)D,分別交,的延長(zhǎng)線于點(diǎn)EF

1)求證:的切線;

2)填空:

①當(dāng)的度數(shù)為_________時(shí),四邊形為菱形;

②若的半徑為,,則的長(zhǎng)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:給定關(guān)于x的函數(shù)y,對(duì)于該函數(shù)圖象上任意兩點(diǎn)(x1,y1),(x2,y2),當(dāng)x1=﹣x2時(shí),都有y1y2,稱該函數(shù)為偶函數(shù),根據(jù)以上定義,可以判斷下面所給的函數(shù)中,是偶函數(shù)的有__(填上所有正確答案的序號(hào)).

y2x; y=﹣x+1; yx2; y=﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖A、BC在⊙O上,連接OA、OBOC,若∠BOC3AOB,劣弧AC的度數(shù)是120o,OC.則圖中陰影部分的面積是 ( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小張用4張相同的小紙條做成甲、乙、丙、丁4支簽,放在一個(gè)盒子中,攪勻后先從盒子中任意抽出1支簽(不放回),再?gòu)氖S嗟?/span>3支簽中任意抽出1支簽.

(1)小張第一次抽到的是乙簽的概率是 ;

(2)求抽出的兩支簽中,1支為甲簽、1支為丙簽的概率(用畫樹狀圖或列表法求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD的對(duì)角線ACBD于點(diǎn)E,ABBCF為四邊形ABCD外一點(diǎn),且∠FCA90°,∠CBF=∠DCB

1)求證:四邊形DBFC是平行四邊形;

2)如果BC平分∠DBF,∠F45°,BD2,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,OABC的頂點(diǎn)BC在第二象限,點(diǎn)DAB邊的中點(diǎn),反比例函數(shù)y在第二象限的圖象經(jīng)過(guò)C、D兩點(diǎn).若點(diǎn)A的坐標(biāo)是(﹣2,0),tanCOA3,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點(diǎn)A,與軸交點(diǎn)C,拋物線過(guò)A,C兩點(diǎn),與x軸交于另一點(diǎn)B

1)求拋物線的解析式.

2)在直線AC上方的拋物線上有一動(dòng)點(diǎn)E,連接BE,與直線AC相交于點(diǎn)F,當(dāng)時(shí),求sinEBA的值.

3)點(diǎn)N是拋物線對(duì)稱軸上一點(diǎn),在(2)的條件下,若點(diǎn)E位于對(duì)稱軸左側(cè),在拋物線上是否存在一點(diǎn)M,使以M,N,E,B為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了了解學(xué)生的身高情況,隨機(jī)對(duì)該校男生、女生的身高進(jìn)行抽樣調(diào)查,已知抽取的樣本中,男生、女生的人數(shù)相同,根據(jù)所得數(shù)據(jù)繪制成下面的統(tǒng)計(jì)圖表:

組別

A

B

C

D

E

身高(cm

x150

150x155

155x160

160x165

x165

根據(jù)圖表中信息,回答下列問(wèn)題:

1)在樣本中,男生身高的中位數(shù)落在 組(填組別序號(hào)),女生身高在B組的人數(shù)有 人;

2)已知該校共有男生500人,女生480人,請(qǐng)估計(jì)身高在155x165之間的學(xué)生約有多少人?

3)從男生樣本的A、B兩組里,隨機(jī)安排2人參加一項(xiàng)活動(dòng),求恰好是1人在A組、1人在B組的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案