【題目】已知:如圖,在正方形ABCD中,點(diǎn)E、F分別在BC和CD上,BE=DF.
(1)求證:AE=AF;
(2)連接AC交EF于點(diǎn)O,延長OC至點(diǎn)M,使OM=OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.
【答案】(1)證明見解析;(2) 四邊形AEMF是菱形,理由見解析.
【解析】(1)求簡單的線段相等,可證線段所在的三角形全等,即證△ABE≌△ADF;
(2)由于四邊形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;聯(lián)立(1)的結(jié)論,可證得EC=CF,根據(jù)等腰三角形三線合一的性質(zhì)可證得OC(即AM)垂直平分EF;已知OA=OM,則EF、AM互相垂直平分,根據(jù)對(duì)角線互相垂直且平分的四邊形是菱形,即可判定四邊形AEMF是菱形.
解:(1)證明:∵四邊形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
∵AE=AF,
∴Rt△ABE≌Rt△ADF,
∴BE=DF;
(2)四邊形AEMF是菱形.
∵四邊形ABCD是正方形,
∴∠BCA=∠DCA=45°(正方形的對(duì)角線平分一組對(duì)角),
BC=DC(正方形鄰邊相等),
∵BE=DF(已證),
∴BC-BE=DC-DF(等式的性質(zhì)),
即CE=CF,
易得△COE≌△COF,
∴OE=OF,
∵OM=OA,(對(duì)角線互相平分的四邊形是平行四邊形),
∴四邊形AEMF是平行四邊形,
∵AE=AF,
∴平行四邊形AEMF是菱形.
“點(diǎn)睛”此題主要考查的是正方形的性質(zhì)、全等三角形的判定和性質(zhì)及菱形的判定.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算正確的是( )
A.a+a2=2a3
B.a2a3=a6
C.(2a4)4=16a8
D.(﹣a)6÷a3=a3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題的逆命題成立的是( )
A. 對(duì)頂角相等B. 等邊三角形是銳角三角形
C. 正方形的對(duì)角線互相垂直D. 平行四邊形的對(duì)角線互相平分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)用平方差公式計(jì)算,錯(cuò)誤的是( )
A. (b+a) (a﹣b)=a2﹣b2 B. (m2+n2)(m2﹣n2)=m4﹣n4
C. (2﹣3x) (﹣3x﹣2)=9x2﹣4 D. (2x+1)(2x﹣1)=2x2﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于平面內(nèi)任一點(diǎn)P (a,b)若規(guī)定以下兩種變換:①f(a,b)=(﹣a,﹣b),如f(1,2)=(﹣1,﹣2);②g(a,b)=(b,a),如g(1,3)=(3,1)按照以上變換,那么f(g(a,b))等于( 。
A. (﹣b,﹣a) B. (a,b) C. (b,a) D. (﹣a,﹣b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)今年月的商品銷售總額一共是萬元,如圖(1)表示的是其中每個(gè)月銷售總額的情況,圖(2)表示的是商場(chǎng)服裝部各月銷售額占商場(chǎng)當(dāng)月銷售總額的百分比情況,觀察圖(1)、圖(2),下列說法不正確的是( )
A. 4月份商場(chǎng)的商品銷售總額是75萬元 B. 1月份商場(chǎng)服裝部的銷售額是22萬元
C. 5月份商場(chǎng)服裝部的銷售額比4月份減少了 D. 3月份商場(chǎng)服裝部的銷售額比2月份減少了
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com