分析 由矩形的性質(zhì)得出AD=BC,∠D=∠B=90°,由折疊的性質(zhì)得出CB'=BC,∠B'=∠B,因此CB'=AD,由AAS即可證明△CEB'≌△AED.
解答 解:△CEB'≌△AED;理由如下:
∵四邊形ABCD是矩形,
∴AD=BC,∠D=∠B=90°,
由折疊的性質(zhì)得:CF=BC,∠B'=∠B,
∴CB'=AD,∠B'=∠D,
在△CEB'和△AED中,$\left\{\begin{array}{l}{∠B'=∠D}\\{∠CEB'=∠AED}\\{CB'=AD}\end{array}\right.$,
∴△CEB'≌△AED(AAS).
點(diǎn)評(píng) 本題考查了矩形的性質(zhì)、翻折變換的性質(zhì)、全等三角形的判定與性質(zhì),熟練掌握翻折變換和矩形的性質(zhì),并能進(jìn)行推理論證是解決問(wèn)題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{{m}^{2}+{n}^{2}}$ | B. | $\sqrt{16m}$ | C. | $\sqrt{\frac{m}{2}}$ | D. | $\sqrt{0.5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com