【題目】如圖,點O是直線AB上一點,OD平分∠BOC,COE=90°.

(1)若∠AOC=48°,求∠DOE的度數(shù).

(2)若∠AOC=α,則∠DOE=   (用含α的代數(shù)式表示).

【答案】(1) ∠DOE=24°;(2)α.

【解析】

(1)先由鄰補(bǔ)角定義求出∠BOC=180°-AOC=132°,再根據(jù)角平分線定義得到∠COD=∠BOC=66°,那么∠DOE=∠COE-∠COD=24°;
(2)先由鄰補(bǔ)角定義求出∠BOC=180°-∠AOC=180°-α,再根據(jù)角平分線定義得到∠COD=∠BOC,于是得到結(jié)論.

解:(1)∵O是直線AB上一點,

∴∠AOC+∠BOC=180°,

∵∠AOC=48°,

∴∠BOC=132°,

∵OD平分∠BOC,

∴∠COD=∠BOC=66°,

∠DOE=∠COE﹣∠COD,∠COE=90°,

∴∠DOE=90°﹣66°=24°;

(2)∵O是直線AB上一點,

∴∠AOC+∠BOC=180°,

∵∠AOC=α,

∴∠BOC=180°﹣α,

∵OD平分∠BOC,

∴∠COD=∠BOC=(180°﹣α)=90°﹣α,

∵∠DOE=∠COE﹣∠COD,∠COE=90°,

∴∠DOE=90°﹣(90°﹣α)=α.

故答案為:α.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:△ABC是⊙O的內(nèi)接三角形,∠ACB=45°,∠AOC=150°,過點C作⊙O的切線交AB的延長線于點D.

(1)求證:CD=CB;
(2)如果⊙O的半徑為 ,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCDEF中,已知AB=DE,A=D,若要得到ABC≌△DEF,則還要補(bǔ)充一個條件,在下列補(bǔ)充方法:①AC=DF;②∠B=E;③∠B=F;④∠C=F BC=EF中,則錯誤結(jié)論的序號是__________ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A+∠B=200°,作∠ADC、BCD的平分線交于點O1稱為第1次操作,作∠O1DC、O1CD的平分線交于點O2稱為第2次操作,作∠O2DC、O2CD的平分線交于點O3稱為第3次操作,,則第5次操作后∠CO5D的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索規(guī)律:觀察下面由組成的圖案和算式,解答問題:

(1)請猜想1+3+5+7+9+…+19=_______________________;

(2)請猜想1+3+5+7+9+…+(2n-1)+(2n+1) =___________;

(3)用上述規(guī)律計算:51+53+55+…+2011+2013.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在的正方形網(wǎng)格中,點P的邊OB上的一點

1過點POB的垂線,交OA于點C;過點POA的垂線,垂足為H;

2線段PH的長度是點P到直線__________的距離;

3線段__________的長度是點C到直線OB的距離;

4線段PCPH、OC這三條線段大小關(guān)系是__________“<”號連接).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是圓O的直徑,CD是圓O的一條弦,且CD⊥AB于點E.

(1)若∠A=48°,求∠OCE的度數(shù);
(2)若CD=4 ,AE=2,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,CE、CF分別是ABC的內(nèi)外角平分線,過點ACE、CF的垂線,垂足分別為E、F.

(1)求證:四邊形AECF是矩形;

(2)當(dāng)ABC滿足什么條件時,四邊形AECF是正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國郵政部門規(guī)定:國內(nèi)平信克以內(nèi)(包括克)每克需貼郵票元,不足克重的以克計算;超過克的,超過部分每克需加貼元,不足克的以克計算.

寄一封重克的國內(nèi)平信,需貼郵票多少元?

某人寄一封國內(nèi)平信貼了元郵票,此信重約多少克?

人參加一次數(shù)學(xué)競賽,每份答卷重克,每個信封重克,將這份答卷分裝兩個信封寄出,怎樣裝才能使所貼郵票金額最少?

查看答案和解析>>

同步練習(xí)冊答案