【題目】一張如圖1的長(zhǎng)方形鐵皮,四個(gè)角都剪去邊長(zhǎng)為的正方形,再四周折起,做成一個(gè)有底無(wú)蓋的鐵盒如圖2,鐵盒底面長(zhǎng)方形的長(zhǎng)是,寬是這個(gè)無(wú)蓋鐵盒各個(gè)面的面積之和稱(chēng)為鐵盒的全面積.
(1)圖1中原長(zhǎng)方形鐵皮的面積為_;(用的代數(shù)式表示)
(2)若要在鐵盒的各個(gè)外表面漆上某種油漆,每元錢(qián)可涂的面積為,則涂完這個(gè)鐵盒需要多少錢(qián)?(用的代數(shù)式表示)
(3)是否存在一個(gè)最大正整數(shù),使得鐵盒的全面積是底面積的正整數(shù)倍?若存在,請(qǐng)直接寫(xiě)出這個(gè),若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)12a2+420a+3600;(2)涂完這個(gè)鐵盒需要(480a+16800)元;(3)a=35或7或5或1
【解析】
(1)根據(jù)圖形表示出原長(zhǎng)方形鐵皮的長(zhǎng)和寬,進(jìn)而表示出原長(zhǎng)方形鐵皮的面積即可;
(2)根據(jù)原長(zhǎng)方形鐵皮的面積剪去四個(gè)小正方形的面積,求出鐵盒的表面積,乘以單價(jià)即可得到結(jié)果;
(3)假設(shè)存在,列出鐵盒的全面積和底面積的公式,求整數(shù)倍數(shù)即可.
解:(1)原鐵皮的面積是(4a+60)(3a+60)=12a2+420a+3600,
故答案為:12a2+420a+3600;
(2)油漆這個(gè)鐵盒的表面積是:12a2+2×30×4a+2×30×3a=12a2+420a,
則油漆這個(gè)鐵盒需要的錢(qián)數(shù)是:(12a2+420a)÷=(12a2+420a)×=480a+16800(元),
答:涂完這個(gè)鐵盒需要(480a+16800)元;
(3)鐵盒的全面積是4a×3a+4a×30×2+3a×30×2=12a2+420a,
底面積是4a×3a=12a2,
假設(shè)存在正整數(shù)n,使12a2+420a=n·12a2
整理得(n-1)a=35,
則a=35,n=2或a=7,n=6或a=5,n=8或a=1,n=36
所以存在鐵盒的全面積是底面積的正整數(shù)倍,這時(shí)a=35或7或5或1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】臺(tái)風(fēng)是一種自然災(zāi)害,它以臺(tái)風(fēng)中心為圓心,在周?chē)鷶?shù)十千米范圍內(nèi)形氣旋風(fēng)暴,有極強(qiáng)的破壞力,此時(shí)某臺(tái)風(fēng)中心在海域B處,在沿海城市A的正南方向240千米,其中心風(fēng)力為12級(jí),每遠(yuǎn)離臺(tái)風(fēng)中心25千米,臺(tái)風(fēng)就會(huì)減弱一級(jí),如圖所示,該臺(tái)風(fēng)中心正以20千米/時(shí)的速度沿北偏東30°方向向C移動(dòng),且臺(tái)風(fēng)中心的風(fēng)力不變,若城市所受風(fēng)力達(dá)到或超過(guò)4級(jí),則稱(chēng)受臺(tái)風(fēng)影響. 試問(wèn):
(1)A城市是否會(huì)受到臺(tái)風(fēng)影響?請(qǐng)說(shuō)明理由.
(2)若會(huì)受到臺(tái)風(fēng)影響,那么臺(tái)風(fēng)影響該城市的持續(xù)時(shí)間有多長(zhǎng)?
(3)該城市受到臺(tái)風(fēng)影響的最大風(fēng)力為幾級(jí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在△ABC中,∠ABC與∠ACB的平分線相交于點(diǎn)P.
(1)如果∠A=80°,求∠BPC的度數(shù);
(2)如圖②,作△ABC外角∠MBC,∠NCB的角平分線交于點(diǎn)Q,試探索∠Q、∠A之間的數(shù)量關(guān)系.
(3)如圖③,延長(zhǎng)線段BP、QC交于點(diǎn)E,△BQE中,存在一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的2倍,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在直角坐標(biāo)系中,第一次將△OAB變換成△OA1B1,第二次將△OA1B1變換成△OA2B2,第三次將△OA2B2變換成△OA3B3,已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).
(1)觀察每次變換前后的三角形有何變化,找出規(guī)律,按些變換規(guī)律將△OA3B3變換成△OA4B4,則A4的坐標(biāo)是_______,B4的坐標(biāo)是_________.
(2)若按第(1)題的規(guī)律將△OAB進(jìn)行了n次變換,得到△OAnBn,比較每次變換中三角形頂點(diǎn)坐標(biāo)有何變化,找出規(guī)律,請(qǐng)推測(cè)An的坐標(biāo)是_______,Bn的坐標(biāo)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=kx+b與反比例函數(shù)y= 交于A(﹣1,2),B(2,n),與y軸交于C點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)解析式;
(2)如圖1,若將y=kx+b向下平移,使平移后的直線與y軸交于F點(diǎn),與雙曲線交于D,E兩點(diǎn),若S△ABD=3,
求D,E的坐標(biāo).
(3)如圖2,P為直線y=2上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PQ∥y軸交直線AB于Q,交雙曲線于R,若QR=2QP,求P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】三個(gè)城市在同一直線上(市在兩市之間),甲、乙兩車(chē)分別從市、市同時(shí)出發(fā)沿著直線公路相向而行,兩車(chē)均保持勻速行駛,已知甲車(chē)的速度大于乙車(chē)的速度,且當(dāng)甲車(chē)到達(dá)市時(shí),甲、乙兩車(chē)都停止運(yùn)動(dòng),甲、乙兩車(chē)到市的距離之和(千米)與甲車(chē)行駛的時(shí)間(小時(shí))之間的關(guān)系如圖所示,則當(dāng)乙車(chē)到達(dá)市時(shí),甲車(chē)離市還有_______千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是中邊上的中線,過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn)為外一點(diǎn),連接,且.求證:
(1);
(2)CA平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1,圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個(gè)小正方形的邊長(zhǎng)均為1,線段AB的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.
(1)如圖1,在小正方形的頂點(diǎn)上確定一點(diǎn)C,連接AC、BC,使得△ABC為直角三角形,其面積為5,并直接寫(xiě)出△ABC的周長(zhǎng);
(2)如圖2,在小正方形的頂點(diǎn)上確定一點(diǎn)D,連接AD、BD,使得△ABD中有一個(gè)內(nèi)角為45°,且面積為3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種動(dòng)物的身高y(dm)是其腿長(zhǎng)x(dm)的一次函數(shù).當(dāng)動(dòng)物的腿長(zhǎng)為6dm時(shí),身高為45.5dm;當(dāng)動(dòng)物的腿長(zhǎng)為14dm時(shí),身高為105.5dm.
(1)寫(xiě)出y與x之間的關(guān)系式;
(2)當(dāng)該動(dòng)物腿長(zhǎng)10dm時(shí),其身高為多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com