【題目】已知拋物線y=x2﹣2x+1.
(1)求它的對稱軸和頂點坐標;
(2)根據(jù)圖象,確定當x>2時,y的取值范圍.
【答案】解:(1)y=x2﹣2x+1=(x﹣1)2 ,
對稱軸為直線x=1,頂點坐標為(1,0);
(2)拋物線圖象如下圖所示:
由圖象可知當x>2時,y的取值范圍是y>1.
【解析】(1)把拋物線解析式化為頂點式即可得出對稱軸和頂點坐標;
(2)利用描點法畫出圖象,根據(jù)圖象利用數(shù)形結合的方法確定當x>2時,y的取值范圍即可.
【考點精析】根據(jù)題目的已知條件,利用二次函數(shù)的性質的相關知識可以得到問題的答案,需要掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=k1x﹣1的圖象經(jīng)過A(0,﹣1)、B(1,0)兩點,與反比例函數(shù)y= 的圖象在第一象限內的交點為M,若△OBM的面積為1.
(1)求一次函數(shù)和反比例函數(shù)的表達式;
(2)在x軸上是否存在點P,使AM⊥PM?若存在,求出點P的坐標;若不存在,說明理由;
(3)x軸上是否存在點Q,使△QBM∽△OAM?若存在,求出點Q的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程解應用題.
程大位,明代商人,珠算發(fā)明家,被稱為珠算之父、卷尺之父.少年時,讀書極為廣博,對數(shù)學頗感興趣,60歲時完成其杰作《直指算法統(tǒng)宗》(簡稱《算法統(tǒng)宗》).
在《算法統(tǒng)宗》里記載了一道趣題:一百饅頭一百僧,大僧三個更無爭,小僧三人分一個,大小和尚各幾丁?意思是:有100個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個,正好分完.試問大、小和尚各多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知D是△ABC的邊AB上一點,CE∥AB,DE交AC于點O,且OA=OC,猜想線段CD與線段AE的大小關系和位置關系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知BD平分∠ABC. 請補全圖形后,依條件完成解答.
(1)在直線BC下方畫∠CBE,使∠CBE與∠ABC互補;
(2)在射線BE上任取一點F,過點F畫直線FG∥BD交BC于點G;
(3)判斷∠BFG與∠BGF的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一架梯子長25米,斜靠在一面墻上,梯子底端離墻7米。
(1)這個梯子的頂端離地面有多高?
(2)如果梯子的頂端下滑了4米,那么梯子的底端在水平方向滑動了幾米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠BAC=∠DAF=90°,AB=AC,AD=AF,點D、E為BC邊上的兩點,且∠DAE=45°,連接EF、BF,則下列結論:①△AED≌△AEF ②△AED為等腰三角形
③BE+DC>DE④BE2+DC2=DE2,其中正確的有( )個
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一列數(shù),第一個數(shù)為x1=1,第二個數(shù)為x2=3,從第三個數(shù)開始依次為x3,x4,…,xn,….從第二個數(shù)開始,每個數(shù)是左右相鄰兩個數(shù)和的一半,如x2=,x3=.
(1)求x3,x4,x5的值,并寫出計算過程;
(2)根據(jù)(1)的結果,推測x9等于多少;
(3)探索這一列數(shù)的規(guī)律,猜想第k(k為正整數(shù))個數(shù)xk等于多少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為了計算河的寬度,某學習小組在河對岸選定一個目標點A,再在河岸的這一邊選取點B和點C,使AB⊥BC,然后再選取點E,使E C⊥BC,用視線確定BC和AE的交點D.此時如果測得BD=160 米,DC=80米,E C=49米,求A、B間的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com