精英家教網 > 初中數學 > 題目詳情

【題目】如圖,把矩形ABCD沿EF折疊,使點B落在邊AD上的點B處,點A落在點A處.若AEa,ABb,BFc,請寫出ab,c之間的一個等量關系為__________

【答案】c2a2b2

【解析】

連接BE,由四邊形ABCD為矩形可以得出ADBC,就有∠DEF=BFE,根據軸對稱就可以得出△A'B'E≌△ABE,△B'EF≌△BEF,就可以得出B'E=BE,B'F=BF,∠B'FE=BFE,就可以得出∠B'FE=B'EF,就有B'E=B'F,就有B'E=BF,由勾股定理即可得出結論.

c2=a2+b2.理由:連接BE

∵四邊形ABCD是矩形,∴∠A=B=90°.ADBC,∴∠DEF=BFE

∵△A'B'E與△ABE,△B'EF與△BEF關于EF成軸對稱,∴△A'B'E≌△ABE,△B'EF≌△BEF,∴B'E=BE,B'F=BF,AE=A'E,A'B'=AB,∠B'FE=BFE,∠A=A'=90°,∴∠B'EF=B'FE,∴B'E=B'F,∴B'E=BF

AE=a,AB=b,BF=c,∴A'E=a,A'B'=b,B'E=c

∵∠A'=90°,∴c2=a2+b2

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,為了檢驗教室里的矩形門框是否合格,某班的四個學習小組用三角板和細繩分別測得如下結果,其中不能判定門框是否合格的是( )

A. AB=CD,AD=BC,AC=BD B. AC=BD,∠B=∠C=90° C. AB=CD,∠B=∠C=90° D. AB=CD,AC=BD

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,AC=6cm,BC=8cm,動點P從點C出發(fā),按C→B→A的路徑,以2cm每秒的速度運動,設運動時間為t秒,當t___________時,ACP是等腰三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,點P的坐標為2a2+1,則點P所在的象限是____;以方程組 的解為坐標的點xy在平面直角坐標系中的位置是__________;在平面直角坐標系中,如果mn0,請寫出點m,|n|可能在的所有象限:____________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1個等式:1-=×

2個等式:(1-)(1-)=×

3個等式:(1-)(1-)(1-)=×

4個等式:(1-)(1-)(1-)(1-)=×

5個等式:(1-)(1-)(1-)(1-)(1-)=×

······

(1) 寫出第6個等式;

(2) 寫出第n個等式(用含n的等式表示),并予以證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,拋物線y=ax2+bx+4 與x軸交于點A(﹣3,0)和B(2,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)如圖1,若點D為CB的中點,將線段DB繞點D旋轉,點B的對應點為點G,當點G恰好落在拋物線的對稱軸上時,求點G的坐標;

(3)如圖2,若點D為直線BC或直線AC上的一點,E為x軸上一動點,拋物線

y=ax2+bx+4對稱軸上是否存在點F,使以B,D,F,E為頂點的四邊形為菱形?若存在,請求出點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,三角形ABC為一個電子跳蚤游戲盤,其中AB8,AC9,BC10.如果電子跳蚤開始時在BC邊上的點P0處,BP04,第一步跳蚤從點P0處跳到AC邊上的點P1處,且CP1CP0;第二步跳蚤從點P1處跳到AB邊上的點P2處,且AP1AP2;第三步跳蚤從點P2處跳回到BC邊上的點P3處,且BP3BP2……若跳蚤按上述規(guī)則跳下去,第n次的落點為Pn,則點P3與點P2019之間的距離為( )

A. 0 B. 1 C. 4 D. 5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解下列方程:

(1)43(x2)x.

(2)1.

(3)x.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某班同學響應“陽光體育運動”號召,利用課外活動積極參加體育鍛煉,每位同學從長跑、鉛球、立定跳遠、籃球定時定點投籃中任選一項進行了訓練,訓練前后都進行了測試,現將項目選擇情況及訓練后籃球定時定點投籃進球數(每人投10次)進行整理,作出如下統(tǒng)計圖表.

進球數(個)

8

7

6

5

4

3

人數

2

1

4

7

8

2


請你根據圖表中的信息回答下列問題:
(1)訓練后籃球定時定點投籃人均進球數為個;進球數的中位數為個,眾數為個;
(2)該班共有多少學生;
(3)根據測試資料,參加籃球定時定點投籃的學生訓練后比訓練前的人均進球增加了20%,求參加訓練之前的人均進球數(保留一位小數).

查看答案和解析>>

同步練習冊答案