△ABC是一張等腰直角三角形紙板,∠C=Rt∠,AC=BC=2,(1)要在這張紙板中剪出一個盡可能大的正方形,有甲、乙兩種剪法(如圖1),比較甲.乙兩種剪法,哪種剪法所得的正方形面積大?請說明理由。
(2)圖1中甲種剪法稱為第1次剪取,記所得正方形面積為;按照甲種剪法,在余下的△ADE和△BDF中,分別剪取正方形,得到兩個相同的正方形,稱為第2次剪取,并記這兩個正方形面積和為(如圖2),則;再在余下的四個三角形中,用同樣方法分別剪取正方形,得到四個相同的正方形,稱為第3次剪取,并記這四個正方形面積和為,繼續(xù)操作下去……,則第10次剪取時,;
(3)求第10次剪取后,余下的所有小三角形的面積之和。
(1)甲種剪法所得的正方形面積更大,理由見解析(2) ,(3)
【解析】(1)解法1:如圖甲,由題意,得AE=DE=EC,即EC=1,S正方形CFDE=12=1
如圖乙,設MN=x,則由題意,得AM=MQ=PN=NB=MN=x,
∴,
解得
∴
又∵
∴甲種剪法所得的正方形面積更大.
說明:圖甲可另解為:由題意得點D、E、F分別為AB、AC、BC的中點,S正方形OFDE=1.
解法2:如圖甲,由題意得AE=DE=EC,即EC=1,
如圖乙,設MN=x,則由題意得AM=MQ=QP=PN=NB=MN=x,
則,
解得,
又∵,即EC>MN.
∴甲種剪法所得的正方形面積更大.
(2),.
(3)解法1:探索規(guī)律可知:
剩余三角形面積和為2﹣(S1+S2+…+S10)=2﹣(1++…+)=
解法2:由題意可知,
第一次剪取后剩余三角形面積和為2﹣S1=1=S1
第二次剪取后剩余三角形面積和為,
第三次剪取后剩余三角形面積和為,
…
第十次剪取后剩余三角形面積和為.
(1)分別求出甲、乙兩種剪法所得的正方形面積,進行比較即可;
(2)按圖1中甲種剪法,可知后一個三角形的面積是前一個三角形的面積的,依此可知結果;
(3)探索規(guī)律可知:,依此規(guī)律可得第10次剪取后,余下的所有小三角形的面積之和.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
1 |
29 |
1 |
29 |
1 |
22011 |
1 |
22011 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
|
|
|
|
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
1 |
4 |
1 |
4 |
1 |
8 |
1 |
8 |
1 |
2n+1 |
1 |
2n+1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com