【題目】在中,,,平分交于,,在,上,且.
(1)求的度數(shù);
(2)求證:.
【答案】(1)108°;(2)見解析
【解析】
(1)由等腰三角形的性質(zhì)和三角形內(nèi)角和定理得出∠B=∠ACB=72°,由角平分線定義得出∠ACD=∠BCD=36°,由三角形的外角性質(zhì)即可得出答案;
(2)由(1)得∠ACD=36°=∠A,∠ADC=108°,得出AD=CD,證出∠ADC=∠EDF,得出∠ADE=∠CDF,證明△ADE≌△CDF(ASA),得出AE=CF,即可得出結(jié)論.
(1)解:∵AB=AC,∠A=36°,
∴∠B=∠ACB=(180°-36°)=72°,
∵CD平分∠ACB,
∴∠ACD=∠BCD=36°,
∴∠ADC=∠B+∠BCD=72°+36°=108°;
(2)證明:由(1)得:∠ACD=36°=∠A,∠ADC=108°,
∴AD=CD,
∵∠EDF=108°,
∴∠ADC=∠EDF,
∴∠ADE=∠CDF,
在△ADE和△CDF中,
,
∴△ADE≌△CDF(ASA),
∴AE=CF,
∵CF+BF=BC,
∴AE+BF=BC.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點A(﹣1,0),B(4,0),C(0,2)三點,點D與點C關(guān)于x軸對稱,點P是x軸上的一個動點,設(shè)點P的坐標(biāo)為(m,0),過點P做x軸的垂線l交拋物線于點Q,交直線BD于點M.
(1)求該拋物線所表示的二次函數(shù)的表達(dá)式;
(2)已知點F(0,),當(dāng)點P在x軸上運動時,試求m為何值時,四邊形DMQF是平行四邊形?
(3)點P在線段AB運動過程中,是否存在點Q,使得以點B、Q、M為頂點的三角形與△BOD相似?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰中,,于.的平分線分別交,于點,兩點,為的中點,延長交于點,連接.下列結(jié)論:①;②;③是等腰三角形;④.其中正確的結(jié)論個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場準(zhǔn)備進一批兩種不同型號的衣服,已知購進A種型號衣服9件,B種型號衣服10件,則共需1810元;若購進A種型號衣服12件,B種型號衣服8件,共需1880元;已知銷售一件A型號衣服可獲利18元,銷售一件B型號衣服可獲利30元,要使在這次銷售中獲利不少于699元,且A型號衣服不多于28件.
(1)求A、B型號衣服進價各是多少元?
(2)若已知購進A型號衣服是B型號衣服的2倍還多4件,則商店在這次進貨中可有幾種方案并簡述購貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,直線a,b,c分別通過A、D、C三點,且a∥b∥c.若a與b之間的距離是5,b與c之間的距離是7,則正方形ABCD的面積是( )
A.70B.74C.144D.148
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=BC=2,D為BC的中點,在AC邊上存在一點E,連結(jié)ED,EB,則△BDE周長的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAC=30°,P是∠BAC平分線上一點,PM∥AC交AB于M,PD⊥AC于D,若PD=3,則AM=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,A是反比例函數(shù)圖象上一點,過點A作AB⊥y軸于點B,點P在x軸上,△ABP的面積為4,則這個反比例函數(shù)的解析式為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com