如圖,在平面直角坐標(biāo)系xOy中,直線AB與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,且OA=3,AB=6.點(diǎn)P從點(diǎn)O出發(fā)沿OA以每秒1個單位長的速度向點(diǎn)A勻速運(yùn)動,到達(dá)點(diǎn)A后立刻以原來的速度沿AO返回;點(diǎn)Q從點(diǎn)A出發(fā)沿AB以每秒1個單位長的速度向點(diǎn)B勻速運(yùn)動.伴隨著P、Q的運(yùn)動,DE保持垂直平分PQ,且交PQ于點(diǎn)D,交折線QB-BO-OP于點(diǎn)E.點(diǎn)P、Q同時出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)B時停止運(yùn)動,點(diǎn)P也隨之停止.設(shè)點(diǎn)P、Q運(yùn)動的時間是t秒(t>0).
(1)求直線AB的解析式;
(2)在點(diǎn)P從O向A運(yùn)動的過程中(不包括A、O),求△APQ的面積S與t之間的函數(shù)關(guān)系式,并直接寫出t的取值范圍;
(3)在點(diǎn)E從B向O運(yùn)動的過程中,完成下面問題:
四邊形QBED能否成為直角梯形?若能,請求出t的值;若不能,請說明理由;
(1)直線AB的解析式為 (1分)
(2)
(2分)
() (1分)
(3)四邊形QBED能成為直角梯形.
①(Ⅰ)當(dāng)DE∥QB時,
∵DE⊥PQ,
∴PQ⊥QB,四邊形QBED是直角梯形.
此時∠AQP=90°.
由(2)得AP=2AQ,即3-t=2t (2分)
解得t= 1; (1分)
(Ⅱ)當(dāng)PQ∥BO時,
∵DE⊥PQ,
∴DE⊥BO,四邊形QBED是直角梯形.
此時∠APQ=90°.
由(2)得AQ=2AP,即2(3-t)=t (1分)
解得t= 2
【解析】(1)首先由在Rt△AOB中,OA=3,AB=5,求得OB的值,然后利用待定系數(shù)法即可求得二次函數(shù)的解析式;
(2)過點(diǎn)Q作QF⊥AO于點(diǎn)F,由△AQF∽△ABO,根據(jù)相似三角形的對應(yīng)邊成比例,借助于方程即可求得QF的長,然后即可求得△APQ的面積S與t之間的函數(shù)關(guān)系式;
(3)分別從DE∥QB與PQ∥BO去分析,借助于相似三角形的性質(zhì),即可求得t的值;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
|
|
|
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com