當k=
±1
±1
時,方程(k2-1)x2-(2k+1)x+3k=0是關于x的一元一次方程;當k=
≠±1
≠±1
時,上述方程才是一元二次方程.
分析:分別根據(jù)一元一次方程與一元二次方程的定義列出關于k的方程,求出k的值即可.
解答:解:∵方程(k2-1)x2-(2k+1)x+3k=0是關于x的一元一次方程,
k2-1=0
2k+1≠0
,解得k=±1;
∵方程(k2-1)x2-(2k+1)x+3k=0是關于x的一元二次方程,
∴k2-1≠0,即k≠±1.
故答案為:±1;≠±1.
點評:本題考查的是一元二次方程,在解答此類問題時要注意形如ax2+c=0(a≠0)的方程也是一元二次方程.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

設一組數(shù)據(jù)是x1,x2,…,xn,它們的平均數(shù)是
.
x
,方差s2=
1
n
[(x1-
.
x
)
2
+(x2-
.
x
)
2
+…+(xn-
.
x
)
2
]

(Ⅰ)證明:方差也可表示為s2=
1
n
(
x
2
1
+
x
2
2
+…+
x
2
n
)-
.
x
 
2
;并且s2≥0,當x1=x2=…=xn=
.
x
時,方差s2取最小值0;
(Ⅱ)求滿足方程x2+(y-1)2+(x-y)2=
1
3
的一切實數(shù)對(x,y).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,四邊形ABCD是正方形,點E和點F分別在CD和DA上,且∠CBF=∠EFB
(1)小方同學發(fā)現(xiàn),當E為CD的中點時,tan∠ABF=
1
3
,當DE=
1
3
CD時,tan∠ABF=
1
5
,當DE=
1
4
CD時,tan∠ABF=
1
7
,那么當DE=
1
5
CD時,tan∠ABF=
 

(2)如圖2,當DE=
1
k+1
CD時,tan∠ABF=
 
.證明你的猜測的正確性.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

為確保信息安全,信息需要加密傳輸,發(fā)送方由“明文
加密
密文”,接收方由“密文
解密
明文”.已知加密規(guī)則為:當明文a≥1時,a對應的密文為a2-2a+1;當明文a<1時,a對應的密文為-a2+2a-1.例如:明文2對應的密文是 22-2×2+1=1;明文-1對應的密文是-(-1)2+2×(-1)-1=-4.如果接收方收到的密文為4和-16,則對應的明文分別是
3
3
-3
-3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

設一組數(shù)據(jù)是x1,x2,…,xn,它們的平均數(shù)是數(shù)學公式,方差數(shù)學公式
(Ⅰ)證明:方差也可表示為數(shù)學公式;并且s2≥0,當x1=x2=…=xn=數(shù)學公式時,方差s2取最小值0;
(Ⅱ)求滿足方程數(shù)學公式的一切實數(shù)對(x,y).

查看答案和解析>>

科目:初中數(shù)學 來源:2002年安徽省普通高中理科實驗班招生考試數(shù)學試卷(解析版) 題型:解答題

設一組數(shù)據(jù)是x1,x2,…,xn,它們的平均數(shù)是,方差
(Ⅰ)證明:方差也可表示為;并且s2≥0,當x1=x2=…=xn=時,方差s2取最小值0;
(Ⅱ)求滿足方程的一切實數(shù)對(x,y).

查看答案和解析>>

同步練習冊答案