【題目】某數(shù)學(xué)老師為了了解學(xué)生在數(shù)學(xué)學(xué)習(xí)中常見錯誤的糾正情況,收集整理了學(xué)生在作業(yè)和考試中的常見錯誤,編制了10道選擇題,每題3分,對他所教的初三(1)班、(2)班進(jìn)行了檢測,如圖表示從兩班各隨機抽取的10名學(xué)生的得分情況.
(1)利用圖中提供的信息,補全下表:
班級 | 平均數(shù)/分 | 中位數(shù)/分 | 眾數(shù)/分 | 方差/分 |
初三(1)班 | 24 | 24 | ________ | 5.4 |
初三(2)班 | 24 | _________ | 21 | ________ |
(2)哪個班的學(xué)生糾錯的得分更穩(wěn)定?若把24分以上(含24分)記為“優(yōu)秀”,兩班各40名學(xué)生,請估計兩班各有多少名學(xué)生成績優(yōu)秀;
(3)現(xiàn)從兩個班抽取了數(shù)學(xué)成績最好的甲、乙、丙、丁四位同學(xué),并隨機分成兩組進(jìn)行數(shù)學(xué)競賽,求恰好選中甲、乙一組的概率.
【答案】(1)24,24,;(2)初三(1)班糾錯的得分更穩(wěn)定;兩班各有28、24人成績優(yōu)秀;(3).
【解析】
(1)根據(jù)方差、中位數(shù)和眾數(shù)的定義進(jìn)行解答即可;
(2)根據(jù)方差判斷穩(wěn)定性,找到樣本中24分和24分以上人數(shù)所占的比值,用樣本平均數(shù)估計總體平均數(shù);
(3)通過畫樹狀圖或列表即可求出概率.
解:(1)初三(1)班有4名學(xué)生24分,最多,故眾數(shù)為24,
把初三(2)班的成績從小到大排列,則處于中間位置的數(shù)為24和24,故中位數(shù)為24分,
初三(2)班成績的方差為
;
將數(shù)據(jù)填入表中為
班級 | 平均數(shù)/分 | 中位數(shù)/分 | 眾數(shù)/分 | 方差/分 |
初三(1)班 | 24 | 24 | 24 | 5.4 |
初三(2)班 | 24 | 24 | 21 | 19.8 |
(2)∵5.4<19.8,初三(1)班成績的方差小,
∴初三(1)班糾錯的得分更穩(wěn)定;
初三(1)班成績優(yōu)秀人數(shù)為(人),
初三(2)班成績優(yōu)秀人數(shù)為(人);
(3)根據(jù)題意畫樹狀圖如下:
∵共有12種等可能的結(jié)果,甲、乙分在同一組的有2種情況,
∴甲、乙分在同一組的概率為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,∠ACB=90°,BC=3,AC=4,小紅按如下步驟作圖:
①分別以A、C為圓心,以大于AC的長為半徑在AC兩邊作弧,交于兩點M、N;
②連接MN,分別交AB、AC于點D、O;
③過C作CE∥AB交MN于點E,連接AE、CD.
則四邊形ADCE的周長為( 。
A. 10 B. 20 C. 12 D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是小安填寫的數(shù)學(xué)實踐活動報告的部分內(nèi)容
題 目 | 測量鐵塔頂端到地面的高度 | |
測量目標(biāo)示意圖 | ||
相關(guān)數(shù)據(jù) | CD=20m,ɑ=45°,β=52° |
求鐵塔的高度FE(結(jié)果精確到1米)(參考數(shù)據(jù):sin52°≈0.79, cos52°≈0.62,tan52°≈1.28)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩個工廠同時加工一批機器零件.甲工廠先加工了兩天后停止加工,維修設(shè)備,當(dāng)維修完設(shè)備時,甲乙兩廠加工的零件數(shù)相等,甲工廠再以原來的工作效率繼續(xù)加工這批零件.甲乙兩廠加工零件的數(shù)量(件),(件)與加工件的時間(天)的函數(shù)圖象如圖所示,
(1)乙工廠每天加工零件的數(shù)為_____件;
(2)甲工廠維修設(shè)備的時間是多少天?
(3)求甲維修設(shè)備后加工零件的數(shù)量(件)與加工零件的時間(天)的函數(shù)關(guān)系式,并寫出自變量的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,拋物線與軸交于、兩點,與直線交于、兩點,直線與軸交于點.
(1)求直線的解析式:
(2)若點在線段上以每秒1個單位長度的速度從點向點運動(不與點、重合),同時,點在射線上以每秒2個單位長度的速度從點向點方向運動,設(shè)運動的時間為秒,的面積為,求關(guān)于的函數(shù)關(guān)系式,并求取何值時,最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著新冠肺炎的爆發(fā),市場對口罩的需求量急劇增大.某口罩生產(chǎn)商自二月份以來,--直積極恢復(fù)產(chǎn)能,每日口罩生產(chǎn)量(百萬個)與天數(shù)且為整數(shù))的函數(shù)關(guān)系圖象如圖所示,而該生產(chǎn)商對口供應(yīng)市場對口罩的需求量<(百萬個)與天數(shù)呈拋物線型,第天市場口罩缺口(需求量與供應(yīng)量差)就達(dá)到(百萬個),之后若干天,市場口罩需求量不斷上升,在第天需求量達(dá)到最高峰(百萬個).
求出與的函數(shù)解析式;
當(dāng)市場供應(yīng)量不小于需求量時,市民買口罩才無需提前預(yù)約,那么在整個二月份,市民無需預(yù)約即可購買口罩的天數(shù)共有多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖點A,E,F,C在同一直線上,AE=EF=FC,過E,F分別作DE⊥AC,BF⊥AC,連結(jié)AB,CD,BD,BD交AC于點G,若AB=CD.
(1)求證:△ABF≌△CDE.
(2)若AE=ED=2,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形紙片ABCD中,已知AD=8,AB=6,E是邊BC上的點,以AE為折痕折疊紙片,使點B落在點F處,連接FC,當(dāng)△EFC為直角三角形時,BE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在歌唱比賽中,一位歌手分別轉(zhuǎn)動如下的兩個轉(zhuǎn)盤(每個轉(zhuǎn)盤都被分成3等份)一次,根據(jù)指針指向的歌曲名演唱兩首曲目.
(1)轉(zhuǎn)動轉(zhuǎn)盤①時,該轉(zhuǎn)盤指針指向歌曲“3”的概率是 ;
(2)若允許該歌手替換他最不擅長的歌曲“3”,即指針指向歌曲“3”時,該歌手就選擇自己最擅長的歌曲“1”, 請用樹形圖或列表法中的一種,求他演唱歌曲“1”和“4”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com