【題目】如圖,Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O交AB于點D,過點D作⊙O的切線,與邊BC交于點E,若AD=, AC=3.則DE長為( )
A. B. 2 C. D.
【答案】B
【解析】
連接OD,CD.由切線長定理得CD=DE,可證明△ADC∽△ACB,則可求得BD,再由勾股定理求得BC,可證明BE=DE,從而求得DE的長.
連接OD,CD.
∵AC為⊙O的直徑,
∴∠ADC=90°,
∵AD=,AC=3.
∴CD=,
∵OD=OC=OA,
∴∠OCD=∠ODC,
∵DE是切線,
∴∠CDE+∠ODC=90°.
∵∠OCD+∠DCB=90°,
∴∠BCD=∠CDE,
∴DE=CE.
∴△ADC∽△ACB,
∴∠B=∠ACD,
∴,
∴BC==4,
∵∠ACD+∠DCB=90°,
∴∠B+∠DCB=90°,∠B+∠CDE=90°,∠CDE+∠BDE=90°,
∴∠B=∠BDE,
∴BE=DE,
∴BE=CE=DE.
∴DE=BC=×4=2.
故選:B.
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠BCA=90°,AC=BC,點D是BC的中點,點F在線段AD上,DF=CD,BF交CA于E點,過點A作DA的垂線交CF的延長線于點G,下列結論:①CF2=EFBF;②AG=2DC;③AE=EF;④AFEC=EFEB.其中正確的結論有________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲乙兩人輪流在黑板上寫下不超過 的正整數(每次只能寫一個數),規(guī)定禁止在黑板上寫已經寫過的數的約數,最后不能寫的為失敗者,如果甲寫第一個,那么,甲寫數字( )時有必勝的策略.
A. 10 B. 9 C. 8D.6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿B到C的方向運動,且DE始終經過點A,EF與AC交于M點.
(1)求證:△ABE∽△ECM;
(2)探究:在△DEF運動過程中,重疊部分能否構成等腰三角形?若能,求出BE的長;若不能,請說明理由;
(3)當線段BE為何值時,線段AM最短,最短是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場今年2月份的營業(yè)額為400萬元,3月份的營業(yè)額比2月份增加10%,5月份的營業(yè)額達到633.6萬元.求3月份到5月份營業(yè)額的月平均增長率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,為測量江兩岸碼頭B、D之間的距離,從山坡上高度為50米的A處測得碼頭B的俯角∠EAB為15°,碼頭D的俯角∠EAD為45°,點C在線段BD的延長線上,AC⊥BC,垂足為C,求碼頭B、D的距離(結果保留整數).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與軸交于A、B兩點,與軸交于點C,拋物線的對稱軸交軸于點D,已知A(-1,0),C(0,2) .
(1)求拋物線的解析式;
(2)點E是線段BC上的一個動點(不與B、C重合),過點E作軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時點E的坐標.
(3)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△OAB中,OA=4,AB=5,點C在OA上,AC=1,⊙P的圓心P在線段BC上,且⊙P與邊AB,AO都相切.若反比例函數(k≠0)的圖象經過圓心P,則k=________________。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com