【題目】如圖,已知銳角△ABC內(nèi)接于⊙O,連接AO并延長(zhǎng)交BC于點(diǎn)D.
(1)求證:∠ACB+∠BAD=90°;
(2)過(guò)點(diǎn)D作DE⊥AB于E,若∠ADC=2∠ACB,AC=4,求DE的長(zhǎng).
【答案】(1)見解析;(2)2.
【解析】
(1)如圖1中,延長(zhǎng)AD交⊙O于點(diǎn)F,連接BF.首先證明∠ABF=90°,再證明∠AFB=∠C即可解決問(wèn)題.
(2)如圖2中,過(guò)點(diǎn)O作OH⊥AC于H,連接BO.想辦法證明△BDE≌△AOH即可解決問(wèn)題.
(1)證明:延長(zhǎng)AD交⊙O于點(diǎn)F,連接BF.
∵AF為⊙O的直徑,
∴∠ABF=90°,
∴∠AFB+∠BAD=90°,
∵∠AFB=∠ACB,
∴∠ACB+∠BAD=90°.
(2)證明:如圖2中,過(guò)點(diǎn)O作OH⊥AC于H,連接BO.
∵∠AOB=2∠ACB,
∠ADC=2∠ACB,
∴∠AOB=∠ADC,
∴∠BOD=∠BDO,
∴BD=BO,
∴BD=OA,
∵∠BED=∠AHO,∠ABD=∠AOH,
∴△BDE≌△AOH,(AAS),
∴DE=AH,
∵OH⊥AC,
∴AH=CH=AC,
∴AC=2DE=4,
∴DE=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)第一次用元購(gòu)進(jìn)某款機(jī)器人進(jìn)行銷售,很快銷售一空,商家又用元第二次購(gòu)進(jìn)同款機(jī)器人,所購(gòu)進(jìn)數(shù)量是第一次的倍,但單價(jià)貴了元.
(1)求該商家第一次購(gòu)進(jìn)機(jī)器人多少個(gè)?
(2)若所有機(jī)器人都按相同的標(biāo)價(jià)銷售,要求全部銷售完畢的利潤(rùn)率不低于不考慮其他因素,那么每個(gè)機(jī)器人的標(biāo)價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O外一點(diǎn),AB=AC,連接BC,交⊙O于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC,垂足為E.
(1)求證:DE與⊙O相切.
(2)若∠B=30°,AB=4,則圖中陰影部分的面積是 (結(jié)果保留根號(hào)和π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA、PB切⊙O于A、B,點(diǎn)C在弧AB上,DE切⊙O于C,交PA、PB于D、E,已知PO=13cm,⊙O的半徑為5cm,則△PDE的周長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,對(duì)角線,交于點(diǎn),是上任意一點(diǎn),連接并延長(zhǎng),交于點(diǎn),連接,.
(1)求證:四邊形是平行四邊形;
(2)若,,.求出的邊上的高的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】發(fā)現(xiàn)任意三個(gè)連續(xù)的整數(shù)中,最大數(shù)與最小數(shù)這兩個(gè)數(shù)的平方差是4的倍數(shù);
驗(yàn)證:(1) 的結(jié)果是4的幾倍?
(2)設(shè)三個(gè)連續(xù)的整數(shù)中間的一個(gè)為n,計(jì)算最大數(shù)與最小數(shù)這兩個(gè)數(shù)的平方差,并說(shuō)明它是4的倍數(shù);
延伸:說(shuō)明任意三個(gè)連續(xù)的奇數(shù)中,最大的數(shù)與最小的數(shù)這兩個(gè)數(shù)的平方差是8的倍數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說(shuō)法:
①2a+b=0;
②當(dāng)﹣1≤x≤3時(shí),y<0;
③若(x1,y1)、(x2,y2)在函數(shù)圖象上,當(dāng)x1<x2時(shí),y1<y2
④9a+3b+c=0
其中正確的是( 。
A. ①②④ B. ①②③ C. ①④ D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=BC,BE⊥AC于點(diǎn)E,AD⊥BC于點(diǎn)D,∠BAD=45°,AD與BE交于點(diǎn)F,連接CF.
(1)求證:BF=2AE;
(2)若CD=,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題:①所有銳角三角函數(shù)值都為正數(shù);②解直角三角形時(shí)只需已知除直角外的兩個(gè)元素;③Rt△ABC中,∠B=90°,則sin2A+cos2A=1;④Rt△ABC中,∠A=90°,則tanCsinC=cosC.其中正確的命題有( 。
A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com