【題目】老師隨機(jī)抽查了本學(xué)期學(xué)生閱讀課外書冊數(shù)的情況,并將抽查結(jié)果繪制成條形圖(圖1)和不完整的扇形圖(圖2),其中條形圖被墨跡遮蓋了一部分.
(1)條形圖中被遮蓋的人數(shù)為 ,被抽査的學(xué)生讀書冊數(shù)的中位數(shù)為 .
(2)扇形圖中5冊所占的圓心角的度數(shù)為 ;
(3)在所抽查的學(xué)生中隨機(jī)選一人談讀書感想,求選中讀書超過5冊的學(xué)生的概率;
(4)隨后又補(bǔ)查了另外幾人,得知最少的讀了6冊,將補(bǔ)查數(shù)據(jù)與之前的數(shù)據(jù)合并后,發(fā)現(xiàn)冊數(shù)的中位數(shù)沒改變,求最多補(bǔ)查了幾人.
【答案】(1)9,5冊;(2)135°;(3);(4)總?cè)藬?shù)不能超過27,即最多補(bǔ)查了3人.
【解析】
(1)由6冊人數(shù)及其所占百分比求出總?cè)藬?shù),再根據(jù)各冊數(shù)的人數(shù)和等于總?cè)藬?shù)可得5冊人數(shù);
(2)用360°乘以對應(yīng)人數(shù)所占比例即可得;
(3)根據(jù)概率公式用6冊、7冊人數(shù)和除以總?cè)藬?shù)即可得;
(4)由4冊和5冊的人數(shù)和為14,中位數(shù)沒有改變知總?cè)藬?shù)不能超過27,據(jù)此可得答案.
解:(1)∵被調(diào)查的總?cè)藬?shù)為6÷25%=24(人),
∴5冊的人數(shù)為24﹣(5+6+4)=9(人),
被抽査的學(xué)生讀書冊數(shù)的中位數(shù)是第12、13個數(shù)據(jù)的平均數(shù),而第12、13個數(shù)據(jù)均為5冊,
∴被抽査的學(xué)生讀書冊數(shù)的中位數(shù)為5冊,
故答案為9人,5冊;
(2)扇形圖中5冊所占的圓心角的度數(shù)為360°×=135°,
故答案為135°;
(3)選中讀書超過5冊的學(xué)生的概率為;
(4)∵4冊和5冊的人數(shù)和為14,中位數(shù)沒有改變,
∴總?cè)藬?shù)不能超過27,即最多補(bǔ)查了3人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題是假命題的是( ).
A.三角形的外心到三角形三個頂點(diǎn)的距離相等.
B.如果等腰三角形的兩邊長分別是5和6,那么這個等腰三角形的周長為16.
C.將一次函數(shù)y=5x﹣1的圖象向上平移3個單位,所得直線不經(jīng)過第四象限.
D.若關(guān)于x的一元一次不等式組無解,則m的取值范圍是m≤1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C = 90°,點(diǎn)O是斜邊AB上一定點(diǎn),到點(diǎn)O的距離等于OB的所有點(diǎn)組成圖形W,圖形W與AB,BC分別交于點(diǎn)D,E,連接AE,DE,∠AED=∠B.
(1)判斷圖形W與AE所在直線的公共點(diǎn)個數(shù),并證明.
(2)若,,求OB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與軸交于,兩點(diǎn)(點(diǎn)位于點(diǎn)左側(cè)),與軸交于點(diǎn),連接.點(diǎn)為拋物線的頂點(diǎn),點(diǎn)為.
(1)點(diǎn)是第四象限內(nèi)拋物線上的一點(diǎn),過點(diǎn)作軸交拋物線于點(diǎn),作軸于點(diǎn),作軸于點(diǎn),點(diǎn)在點(diǎn)右邊.點(diǎn)是直線上一個動點(diǎn),點(diǎn)是直線上一個動點(diǎn),當(dāng)四邊形的周長最大時,求的最小值;
(2)如圖2,將原拋物線繞其對稱軸與軸的交點(diǎn)旋轉(zhuǎn)得新的拋物線,點(diǎn),的對應(yīng)點(diǎn)分別記為,,把拋物線沿直線平移,,的對應(yīng)點(diǎn)分別記為,是否存在點(diǎn),使得是以為腰的等腰三角形?若存在,請直接寫出的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓柱底面半徑為cm,高為18cm,點(diǎn)A、B分別是圓柱兩底面圓周上的點(diǎn),且A、B在同一母線上,用一根棉線從A點(diǎn)順著圓柱側(cè)面繞3圈到B點(diǎn),則這根棉線的長度最短為( )
A.24cmB.30cmC.2cmD.4cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,△ABE為等邊三角形,連接DE,CE,延長AE交CD于F點(diǎn),則∠DEF的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,=n,M為BC上的一點(diǎn),連接BM.
(1)如圖1,若n=1,
①當(dāng)M為AC的中點(diǎn),當(dāng)BM⊥CD于H,連接AH,求∠AHD的度數(shù);
②如圖2,當(dāng)H為CD的中點(diǎn),∠AHD=45°,求的值和∠CAH的度數(shù);
(2)如圖3,CH⊥AM于H,連接CH并延長交AC于Q,M為AC中點(diǎn),直接寫出tan∠BHQ的值(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABDE是平行四邊形,C為邊B D延長線上一點(diǎn),連結(jié)AC、CE,使AB=AC.
(1)求證:△BAD≌△AEC;
(2)若∠B=30°,∠ADC=45°,BD=10,求平行四邊形ABDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長為3,∠BAD=60°,點(diǎn)E、F在對角線AC上(點(diǎn)E在點(diǎn)F的左側(cè)),且EF=1,則DE+BF最小值為_____
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com