【題目】如圖,已知拋物線軸交于,兩點(diǎn)(點(diǎn)位于點(diǎn)左側(cè)),與軸交于點(diǎn),連接.點(diǎn)為拋物線的頂點(diǎn),點(diǎn)

1)點(diǎn)是第四象限內(nèi)拋物線上的一點(diǎn),過點(diǎn)軸交拋物線于點(diǎn),作軸于點(diǎn),作軸于點(diǎn),點(diǎn)在點(diǎn)右邊.點(diǎn)是直線上一個(gè)動(dòng)點(diǎn),點(diǎn)是直線上一個(gè)動(dòng)點(diǎn),當(dāng)四邊形的周長最大時(shí),求的最小值;

2)如圖2,將原拋物線繞其對稱軸與軸的交點(diǎn)旋轉(zhuǎn)得新的拋物線,點(diǎn),的對應(yīng)點(diǎn)分別記為,把拋物線沿直線平移,,的對應(yīng)點(diǎn)分別記為,是否存在點(diǎn),使得是以為腰的等腰三角形?若存在,請直接寫出的坐標(biāo);若不存在,請說明理由.

【答案】1的最小值為;(2)存在,

【解析】

(1) 設(shè),則.然后再確定拋物線的對稱軸以及開口方向,即可確定最值;

(2)由題意知,拋物線繞其對稱軸與軸的交點(diǎn)旋轉(zhuǎn)得拋物線,點(diǎn)的對應(yīng)與點(diǎn)重合.設(shè),,然后利用勾股定理得到;然后就分別解答即可.

解:(1,,

設(shè),則

拋物線的對稱軸為

矩形的周長

此函數(shù)的圖象為拋物線,其對稱軸為,且

,

當(dāng)時(shí),矩形的周長最大,此時(shí)點(diǎn)的坐標(biāo)為

作點(diǎn)關(guān)于的對稱點(diǎn)

,此時(shí)最小,的最小值

延長,可求得,

的最小值

2)由題意知,拋物線繞其對稱軸與軸的交點(diǎn)旋轉(zhuǎn)得拋物線,點(diǎn)的對應(yīng)與點(diǎn)重合.

設(shè),

,

①當(dāng)時(shí),

化簡后解得

②當(dāng)時(shí),,

化簡后解得

綜上所述,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將RtABC繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到A′B′C,連接BB',若∠A′B′B=20°,則∠A的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具零售店準(zhǔn)備從批發(fā)市場選購A、B兩種文具,批發(fā)價(jià)A種為12/件,B種為8/件.若該店零售AB兩種文具的日銷售量y(件)與零售價(jià)x(元/件)均成一次函數(shù)關(guān)系.(如圖)

1)求yx的函數(shù)關(guān)系式;

2)該店計(jì)劃這次選購AB兩種文具的數(shù)量共120件,所花資金不超過1200元,并希望全部售完獲利不低于178元,若按A種文具日銷售量6件和B種文具每件可獲利1元計(jì)算,則該店這次有哪幾種進(jìn)貨方案?

3)若A種文具的零售價(jià)比B種文具的零售價(jià)高4/件,求兩種文具每天的銷售利潤(元)與A種文具零售價(jià)x(元/件)之間的函數(shù)關(guān)系式,并說明AB兩種文具零售價(jià)分別為多少時(shí),每天銷售的利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).

(1)求證:四邊形BEDF是平行四邊形;

(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某年級(jí)共有名學(xué)生.為了解該年級(jí)學(xué)生,兩門課程的學(xué)習(xí)情況,從中隨機(jī)抽取名學(xué)生進(jìn)行測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進(jìn)行整理描述和分析下面給出了部分信息.

課程成績的頻數(shù)分布直方圖如下(數(shù)據(jù)分成組:,,,,);

課程成績在這一組的數(shù)據(jù)為:

,兩門課程成績的平均數(shù)、中位數(shù)、眾數(shù)如下:

課程

平均數(shù)

中位數(shù)

眾數(shù)

根據(jù)以上信息,回答下列問題:

1)寫出表中的值;

2)在此次測試中,某學(xué)生的課程成績?yōu)?/span>分,課程成績?yōu)?/span>分,這名學(xué)生成績排名更靠前的課程是_______(填“”或“”),理由是;___________;

3)假設(shè)該年級(jí)學(xué)生都參加了此次測試,估計(jì)課程成績超過分的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位需采購一批商品,購買甲商品10件和乙商品15件需資金350,而購買甲商品15件和乙商品10件需要資金375元.

求甲、乙商品每件各多少元?

本次計(jì)劃采購甲、乙商品共30,計(jì)劃資金不超過460,

最多可采購甲商品多少件?

若要求購買乙商品的數(shù)量不超過甲商品數(shù)量的,請給出所有購買方案,并求出該單位購買這批商品最少要用多少資金.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】老師隨機(jī)抽查了本學(xué)期學(xué)生閱讀課外書冊數(shù)的情況,并將抽查結(jié)果繪制成條形圖(圖1)和不完整的扇形圖(圖2),其中條形圖被墨跡遮蓋了一部分.

1)條形圖中被遮蓋的人數(shù)為   ,被抽査的學(xué)生讀書冊數(shù)的中位數(shù)為   

2)扇形圖中5冊所占的圓心角的度數(shù)為   

3)在所抽查的學(xué)生中隨機(jī)選一人談讀書感想,求選中讀書超過5冊的學(xué)生的概率;

4)隨后又補(bǔ)查了另外幾人,得知最少的讀了6冊,將補(bǔ)查數(shù)據(jù)與之前的數(shù)據(jù)合并后,發(fā)現(xiàn)冊數(shù)的中位數(shù)沒改變,求最多補(bǔ)查了幾人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場有一個(gè)可以自由轉(zhuǎn)動(dòng)的圓形轉(zhuǎn)盤(如圖).規(guī)定:顧客購物元以上可以獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn) 盤的機(jī)會(huì),當(dāng)轉(zhuǎn)盤停止時(shí)指針落在哪一個(gè)區(qū)域就獲得相應(yīng)的獎(jiǎng)品 (指針指向兩個(gè)扇形的交線時(shí),當(dāng)作指向右邊的扇形),下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):

轉(zhuǎn)動(dòng)轉(zhuǎn)盤的次數(shù)

落在鉛筆"的次數(shù)

落在鉛筆"的頻率, (結(jié)果保留小數(shù)點(diǎn)后兩位)

1)轉(zhuǎn)動(dòng)該轉(zhuǎn)盤一次,獲得鉛筆的概率約為____ ( 結(jié)果保留小數(shù)點(diǎn)后一位數(shù)字);

2)鉛筆每只元,飲料每瓶元,經(jīng)統(tǒng)計(jì)該商場每天約有名顧各參加抽獎(jiǎng)活動(dòng),請計(jì)算該商場每天需要支出的獎(jiǎng)品費(fèi)用;

3)在(2)的條件下,該商場想把每天支出的獎(jiǎng)品費(fèi)用控制在元左右,則轉(zhuǎn)盤上一瓶飲料區(qū)域的圓心角應(yīng)調(diào)整為 度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AM是△ABC的中線,D是線段AM上一點(diǎn)(不與點(diǎn)A重合).DE∥AB交AC于點(diǎn)F,CE∥AM,連結(jié)AE.

(1)如圖1,當(dāng)點(diǎn)D與M重合時(shí),求證:四邊形ABDE是平行四邊形;

(2)如圖2,當(dāng)點(diǎn)D不與M重合時(shí),(1)中的結(jié)論還成立嗎?請說明理由.

(3)如圖3,延長BD交AC于點(diǎn)H,若BH⊥AC,且BH=AM.

①求∠CAM的度數(shù);

②當(dāng)FH=,DM=4時(shí),求DH的長.

查看答案和解析>>

同步練習(xí)冊答案