【題目】閱讀材料:一般情形下等式=1不成立,但有些特殊實數(shù)可以使它成立,例如:x=2,y=2時,=1成立,我們稱(2,2)是使=1成立的“神奇數(shù)對”.請完成下列問題:
(1)數(shù)對(,4),(1,1)中,使=1成立的“神奇數(shù)對”是 ;
(2)若(5﹣t,5+t)是使=1成立的“神奇數(shù)對”,求t的值;
(3)若(m,n)是使=1成立的“神奇數(shù)對”,且a=b+m,b=c+n,求代數(shù)式(a﹣c)2﹣12(a﹣b)(b﹣c)的最小值.
【答案】(1)(,4);(2)±;(3)﹣36
【解析】
(1)按照題中定義將數(shù)對(,4),(1,1)分別驗算即可;
(2)根據(jù)題意得關(guān)于t 的分式方程,解方程即可;
(3)根據(jù)已知條件,先將m和n用含a,b,c的式子表示出來,再根據(jù)題意得出關(guān)于m和n的等式,然后可得關(guān)于a,b,c的等式,從而可對所給的代數(shù)式配方,求得最值.
解:(1)∵+=+=1
∴(,4)是使=1成立的“神奇數(shù)對”.
∵+=2≠1
∴(1,1)不是使=1成立的“神奇數(shù)對”.
故答案為:(,4);
(2)若(5﹣t,5+t)是使=1成立的“神奇數(shù)對”,
則:+=1
∴5+t+5﹣t=25﹣t2
∴t=±
經(jīng)檢驗,t=±是原方程的解
∴t的值為±;
(3)∵a=b+m,b=c+n
∴m=a﹣b,n=b﹣c
由題意得:+=1
+=1
∴b﹣c+a﹣b=(a﹣b)(b﹣c)
∴a﹣c=(a﹣b)(b﹣c)
∴(a﹣c)2﹣12(a﹣b)(b﹣c)
=(a﹣c)2﹣12(a﹣c)
=(a﹣c﹣6)2﹣36
∵(a﹣c﹣6)2≥0
∴(a﹣c﹣6)2﹣36≥﹣36
∴代數(shù)式(a﹣c)2﹣12(a﹣b)(b﹣c)的最小值為﹣36.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,∠ABC=∠DCB=90°,AB=BC.過點B作BF⊥AD,垂足為點F,
(1)求證:∠DAB=∠FBC;
(2)點E為線段CD上的一點,連接AE交BF于G,若∠BAE+2∠EAD=90°,AG=1,AB=5,求線段CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了促進(jìn)學(xué)生多樣化發(fā)展,某校組織開展了社團(tuán)活動,分別設(shè)置了體育類、藝術(shù)類、文學(xué)類及其它類社團(tuán)(要求人人參與社團(tuán),每人只能選擇一項).為了解學(xué)生喜愛哪種社團(tuán)活動,學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,完成下列問題:
(1)此次共調(diào)查了多少人?
(2)求文學(xué)社團(tuán)在扇形統(tǒng)計圖中所占圓心角的度數(shù);
(3)請將條形統(tǒng)計圖補(bǔ)充完整;
(4)若該校有1500名學(xué)生,請估計喜歡體育類社團(tuán)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AD為斜邊BC上的中線,AE∥BC,CE∥AD,EC的垂直平分線FG交AC點G,連接DG,若∠ADG=24°,則∠B的度數(shù)為_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)中華傳統(tǒng)文化,某校舉辦了學(xué)生“國學(xué)經(jīng)典大賽”.比賽項目為:.唐詩;.宋詞;.論語;.三字經(jīng).比賽形式分“單人組”和“雙人組”.
(1)小麗參加“單人組”,她從中隨機(jī)抽取一個比賽項目,恰好抽中“三字經(jīng)”的概率是多少?
(2)小紅和小明組成一個小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機(jī)抽取一次,則小紅和小明都沒有抽到“論語”的概率是多少?請用畫樹狀圖或列表的方法進(jìn)行說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平面直角坐標(biāo)系中,B、C兩點的坐標(biāo)分別為B(0,3)和C(0,﹣),點A在x軸正半軸上,且滿足∠BAO=30°.
(1)過點C作CE⊥AB于點E,交AO于點F,點G為線段OC上一動點,連接GF,將△OFG沿FG翻折使點O落在平面內(nèi)的點O′處,連接O′C,求線段OF的長以及線段O′C的最小值;
(2)如圖2,點D的坐標(biāo)為D(﹣1,0),將△BDC繞點B順時針旋轉(zhuǎn),使得BC⊥AB于點B,將旋轉(zhuǎn)后的△BDC沿直線AB平移,平移中的△BDC記為△B′D′C′,設(shè)直線B′C′與x軸交于點M,N為平面內(nèi)任意一點,當(dāng)以B′、D′、M、N為頂點的四邊形是菱形時,求點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形OBDC的對角線相交于點E,其中O(0,0),B(3,4),C(m,0),反比例函數(shù)y=(k≠0)的圖象經(jīng)過點B.
(1)求反比例函數(shù)的解析式;
(2)若點E恰好落在反比例函數(shù)y=上,求平行四邊形OBDC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】倡導(dǎo)健康生活推進(jìn)全民健身,某社區(qū)去年購進(jìn)A,B兩種健身器材若干件,經(jīng)了解,B種健身器材的單價是A種健身器材的1.5倍,用7200元購買A種健身器材比用5400元購買B種健身器材多10件.
(1)A,B兩種健身器材的單價分別是多少元?
(2)若今年兩種健身器材的單價和去年保持不變,該社區(qū)計劃再購進(jìn)A,B兩種健身器材共50件,且費(fèi)用不超過21000元,請問:A種健身器材至少要購買多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)交軸于點、,交軸于點,在軸上有一點,連接.
(1)求二次函數(shù)的表達(dá)式;
(2)若點為拋物線在軸負(fù)半軸上方的一個動點,求面積的最大值;
(3)拋物線對稱軸上是否存在點,使為等腰三角形,若存在,請直接寫出所有點的坐標(biāo),若不存在請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com