【題目】如圖,點(diǎn)E在正方形ABCD的對(duì)角線AC上,且EC=2AE,直角三角形FEG的兩直角邊EF、EG分別交BC、DC于點(diǎn)M、N.若正方形ABCD的邊長(zhǎng)為a,則重疊部分四邊形EMCN的面積為( )
A. a2
B. a2
C. a2
D. a2
【答案】D
【解析】解:過E作EP⊥BC于點(diǎn)P,EQ⊥CD于點(diǎn)Q,
∵四邊形ABCD是正方形,
∴∠BCD=90°,
又∵∠EPM=∠EQN=90°,
∴∠PEQ=90°,
∴∠PEM+∠MEQ=90°,
∵三角形FEG是直角三角形,
∴∠NEF=∠NEQ+∠MEQ=90°,
∴∠PEM=∠NEQ,
∵AC是∠BCD的角平分線,∠EPC=∠EQC=90°,
∴EP=EQ,四邊形PCQE是正方形,
在△EPM和△EQN中,
,
∴△EPM≌△EQN(ASA)
∴S△EQN=S△EPM ,
∴四邊形EMCN的面積等于正方形PCQE的面積,
∵正方形ABCD的邊長(zhǎng)為a,
∴AC= a,
∵EC=2AE,
∴EC= a,
∴EP=PC= a,
∴正方形PCQE的面積= a× a= a2 ,
∴四邊形EMCN的面積= a2 ,
故選:D.
過E作EP⊥BC于點(diǎn)P,EQ⊥CD于點(diǎn)Q,△EPM≌△EQN,利用四邊形EMCN的面積等于正方形PCQE的面積求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司保安部去商店購(gòu)買同一品牌的應(yīng)急燈和手電筒,查看定價(jià)后發(fā)現(xiàn),購(gòu)買一個(gè)應(yīng)急燈和5個(gè)手電筒共需50元,購(gòu)買3個(gè)應(yīng)急燈和2個(gè)手電筒共需85元.
(1)求出該品牌應(yīng)急燈、手電筒的定價(jià)分別是多少元?
(2)經(jīng)商談,商店給予該公司購(gòu)買一個(gè)該品牌應(yīng)急燈贈(zèng)送一個(gè)該品牌手電筒的優(yōu)惠,如果該公司需要手電筒的個(gè)數(shù)是應(yīng)急燈個(gè)數(shù)的2倍還多8個(gè),且該公司購(gòu)買應(yīng)急燈和手電筒的總費(fèi)用不超過670元,那么該公司最多可購(gòu)買多少個(gè)該品牌應(yīng)急燈?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,與∠1是同位角的是__________,與∠1是內(nèi)錯(cuò)角的是__________,與∠1是同旁內(nèi)角的是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】11世紀(jì)的一位阿拉伯?dāng)?shù)學(xué)家曾提出一個(gè)“鳥兒捉魚”問題:小溪邊長(zhǎng)著兩棵棕櫚樹,恰好隔岸相望一棵棕櫚樹高是30肘尺(肘尺是古代的長(zhǎng)度單位),另外一棵高20肘尺;兩棵棕櫚樹的樹干間的距離是50肘尺.每棵樹的樹頂上都停著一只鳥.忽然,兩只鳥同時(shí)看見棕櫚樹間的水面上游出一條魚,它們立刻以相同的速度飛去抓魚,并且同時(shí)到達(dá)目標(biāo).問:這條魚出現(xiàn)的地方離比較高的棕櫚樹的樹根有多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算題
(1)已知A=3x2+4xy,B=x2+3xy--y2,求:-A+2B.
(2)先化簡(jiǎn),再求值:2(5a2-7ab+9b2)-3(14a2-2ab+3b2),其中a=,b=-.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)3×3的方格中填寫了9個(gè)數(shù)字,使得每行、每列、每條對(duì)角線上的三個(gè)數(shù)之和相等,得到的3×3的方格稱為一個(gè)三階幻方.
(1)在圖1中空格處填上合適的數(shù)字,使它構(gòu)成一個(gè)三階幻方;
(2)如圖2的方格中填寫了一些數(shù)和字母,當(dāng)x+y的值為多少時(shí),它能構(gòu)成一個(gè)三階幻方.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)的圖像與軸交于點(diǎn),一次函數(shù)的圖像過點(diǎn),且與軸及的圖像分別交于點(diǎn)、,點(diǎn)坐標(biāo)為.
(1)求n的值及一次函數(shù)的解析式.
(2)求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC=60°,AB=2,點(diǎn)P是這個(gè)菱形內(nèi)部或邊上的一點(diǎn),若以點(diǎn)P、B、C為頂點(diǎn)的三角形是等腰三角形,則P、D(P、D兩點(diǎn)不重合)兩點(diǎn)間的最短距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,∠ABC=100°,BD是∠ABC的平分線,E是AB的中點(diǎn).
(1)證明DE∥BC;(2)求∠EDB的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com