【題目】下列計算錯誤的是( )
A. =4
B.32×3﹣1=3
C.20÷2﹣2=
D.(﹣3×102)3=﹣2.7×107
【答案】C
【解析】解:A、 =4,正確,故A不合題意; B、32×3﹣1=3,正確,故B不合題意;
C、20÷2﹣2=4,不正確,故C合題意;
D、(﹣3×102)3=﹣2.7×107 , 正確,故D不合題意;
故選C.
【考點精析】本題主要考查了零指數(shù)冪法則和整數(shù)指數(shù)冪的運算性質(zhì)的相關(guān)知識點,需要掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,n+1個直角邊長為1的等腰直角三角形,斜邊在同一直線上,設△B2D1C1的面積為S1 , △B3D2C2的面積為S2 , …,△Bn+1DnCn的面積為Sn , 則S1= , Sn=(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)與x軸交于A(2,0),B(4,0)兩點,與y軸交于點C(0,2).
(1)求拋物線的解析式;
(2)點P從點O出發(fā),乙每秒2個單位長度的速度向點B運動,同時點E也從點O出發(fā),以每秒1個單位長度的速度向點C運動,設點P的運動時間t秒(0<t<2).
①過點E作x軸的平行線,與BC相交于點D(如圖所示),當t為何值時, 的值最小,求出這個最小值并寫出此時點E、P的坐標;
②在滿足①的條件下,拋物線的對稱軸上是否存在點F,使△EFP為直角三角形?若存在,請直接寫出點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解中考體育科目訓練情況,某校從九年級學生中隨機抽取部分學生進行了一次中考體育科目測試(把測試結(jié)果分為A,B,C,D四個等級),并將測試結(jié)果繪制成了如圖所示的兩幅不完整統(tǒng)計圖,根據(jù)統(tǒng)計圖中提供的信息,結(jié)論錯誤的是( )
A.本次抽樣測試的學生人數(shù)是40
B.在圖1中,∠α的度數(shù)是126°
C.該校九年級有學生500名,估計D級的人數(shù)為80
D.從被測學生中隨機抽取一位,則這位學生的成績是A級的概率為0.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△AOB的斜邊OA在x軸的正半軸上,∠OBA=90°,且tan∠AOB= ,OB=2 ,反比例函數(shù)y= 的圖象經(jīng)過點B.
(1)求反比例函數(shù)的表達式;
(2)若△AMB與△AOB關(guān)于直線AB對稱,一次函數(shù)y=mx+n的圖象過點M、A,求一次函數(shù)的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l的函數(shù)表達式為y=x,點O1的坐標為(1,0),以O1為圓心,O1O為半徑畫圓,交直線l于點P1 , 交x軸正半軸于點O2 , 以O2為圓心,O2O為半徑畫圓,交直線l于點P2 , 交x軸正半軸于點O3 , 以O3為圓心,O3O為半徑畫圓,交直線l于點P3 , 交x軸正半軸于點O4;…按此做法進行下去,其中 的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.
(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.
(2)性質(zhì)探究:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關(guān)系.
猜想結(jié)論:(要求用文字語言敘
寫出證明過程(先畫出圖形,寫出已知、求證).
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標為(4,﹣ ),且與y軸交于點C(0,2),與x軸交于A,B兩點(點A在點B的左邊).
(1)求拋物線的解析式及A、B兩點的坐標;
(2)在(1)中拋物線的對稱軸l上是否存在一點P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,請說明理由;
(3)以AB為直徑的⊙M相切于點E,CE交x軸于點D,求直線CE的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com