如圖,直角坐標(biāo)系中,以點A(1,0)為圓心畫圓,點M(4,4)在⊙A上,直線y=-x+b過點M,分別交x軸、y軸于B、C兩點.
【小題1】求⊙A的半徑和b的值;
【小題2】判斷直線BC與⊙A的位置關(guān)系,并說明理由;
【小題3】若點P在⊙A上,點Q是y軸上C點下方的一點,當(dāng)△PQM為等腰直角三角形時,請直接寫出滿足條件的點Q(0,k)(k為整數(shù))坐標(biāo).

【小題1】連結(jié)MA,過M作MD⊥x軸,垂足為D

∵M(4,4),A(1, 0)∴AD=3,MD=4,∴MA=5,即⊙A的半徑為5;………… 1分
又直線y=-x+b過點M(4,4),代入可得b=7… 2分
【小題2】∵直線y=-x+7分別交x軸、y軸于B、C兩點
可解得C(0,7),B(,0),∴AB=,DB=…4分
在Rt△MBD中,MB===………… 5分
,得,………… 6分
又∠ABM =∠MBD
∴△ABM∽△MBD,∠AMB =∠MDB=90°……… 7分
∴AM⊥直線BC,∴直線BC與⊙A相切 ………… 8分
【小題3】①當(dāng)∠PQM=90°時,Q(0,0);…………10分

②當(dāng)∠PMQ=90°,Q (0,2);………… 12分

③當(dāng)∠QPM=90°時,Q(0,)或(0,-8)…… 14分

其余兩種不合題意,舍去。
解析:
(1)連結(jié)MA,過M作MD⊥x軸,垂足為D由圖可得,AM2=AD2+MD2,且AD=3,MD=4,代入可得;
(2)只要證明∠AMB=90°可得出直線BC與⊙A相切
(3)題目分為3種情況:①當(dāng)∠PQM=90°時,②當(dāng)∠PMQ=90°,③當(dāng)∠QPM=90°時,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直角坐標(biāo)系中,△ABC的頂點都在網(wǎng)格點上,其中,A點坐標(biāo)為(2,-1),則△ABC的面積為
 
平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角坐標(biāo)系中,已知點A(3,0),B(t,0)(0<t<
32
),以AB為邊在x軸上方作正方形ABCD,點E是直線OC與正方形ABCD的外接圓除點C以外的另一個交點,連接AE與BC相交于點F.
(1)求證:△OBC≌△FBA;?
(2)一拋物線經(jīng)過O、F、A三點,試用t表示該拋物線的解析式;?
(3)設(shè)題(2)中拋物線的對稱軸l與直線AF相交于點G,若G為△AOC的外心,試求出拋物線的解析式;?
(4)在題(3)的條件下,問在拋物線上是否存在點P,使該點關(guān)于直線AF的對稱點在x軸上精英家教網(wǎng)?若存在,請求出所有這樣的點;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在如圖平面直角坐標(biāo)系中,△ABC三個頂點A、B、C的坐標(biāo)分別為A(2,-1),B(1,-3),C(4,-4),
請解答下列問題:
(1)把△ABC向左平移4個單位,再向上平移3個單位,恰好得到△A1B1C1試寫出△A1B1C1三個頂點的坐標(biāo);
(2)在直角坐標(biāo)系中畫出△A1B1C1
(3)求出線段AA1的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角坐標(biāo)系中,△ABC的頂點都在網(wǎng)格點上,C點坐標(biāo)為(1,2),原來△ABC各個頂點縱坐標(biāo)不變,橫坐標(biāo)都增加2,所得的三角形面積是
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在如圖的直角坐標(biāo)系中,將△ABC平移后得到△A′B′C′,它們的個頂點坐標(biāo)如表所示:
△ABC A(a,0) B(3,0) C(5,5)
△A′B′C′ A′(4,2) B′(7,b) C′(c,d)
(1)觀察表中各對應(yīng)點坐標(biāo)的變化,并填空:△ABC向
平移
4
4
個單位長度,再向
平移
2
2
個單位長度可以得到△A′B′C′;
(2)在坐標(biāo)系中畫出△ABC及平移后的△A′B′C′;
(3)求出△A′B′C′的面積.

查看答案和解析>>

同步練習(xí)冊答案