已知:如圖,△ABC中,點E在中線BD上,∠DAE=∠ABD.
求證:(1)AD2=DE•DB;
   (2)∠DEC=∠ACB.

證明:(1)∵∠DAE=∠ABD,∠ADE=∠BDA,
∴△ADE∽△BDA.
,
即AD2=DE•DB.

(2)∵D是AC邊上的中點,
∴AD=DC.

,
又∵∠CDE=∠BDC.
∴△CDE∽△BDC.
∴∠DEC=∠ACB.
分析:(1)由∠DAE=∠ABD,∠ADE=∠BDA,根據(jù)有兩角對應相等的三角形相似,可得△ADE∽△BDA,然后由相似三角形的對應邊成比例,即可證得AD2=DE•DB;
(2)由點E在中線BD上,可得,又由∠CDE=∠BDC,根據(jù)兩組對應邊的比相等且夾角對應相等的兩個三角形相似,即可得△CDE∽△BDC,繼而證得∠DEC=∠ACB.
點評:此題考查了相似三角形的判定與性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點D,BE平分∠ABC,交AD于點M,AN平分∠DAC,交BC于點N.
求證:四邊形AMNE是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,∠ABC、∠ACB 的平分線相交于點F,過F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC是等邊三角形,點D在AB上,點E在AC的延長線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AB=AC=10,BC=16,點D在BC上,DA⊥CA于A.
求:BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AD⊥BC,BD=DE,點E在AC的垂直平分線上.
(1)請問:AB、BD、DC有何數(shù)量關系?并說明理由.
(2)如果∠B=60°,請問BD和DC有何數(shù)量關系?并說明理由.

查看答案和解析>>

同步練習冊答案