已知C為線段AB上一點,且AC=數(shù)學(xué)公式AB,D為線段AB上另一點,D分線段AB所得兩條線段的長為5:11,若CD=20cm,則AB=________.

192cm或cm
分析:題中沒有說明點D分AB的具體位置,因而分兩種情況:AD:DB=5:11;DB:DA=5:11,分別計算求值.
解答:
解:如圖,設(shè)AB長為x,則:
(1)AD:DB=5:11,x-x=20,AB=x=192(cm);
(2)DB:DA=5:11,則x-x=20,AB=x=(cm).
點評:在未畫圖類問題中,正確理解題意很重要.本題滲透了分類討論的思想,體現(xiàn)了思維的嚴(yán)密性,在今后解決類似的問題時,要防止漏解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、已知:如圖1,點C為線段AB上一點,△ACM和△CBN都是等邊三角形,AN、BM交于點P,由△BCM≌△NCA,易證結(jié)論:①BM=AN.

(1)請寫出除①外的兩個結(jié)論:
∠MBC=∠ANC
∠BMC=∠NAC
;
(2)求出圖1中AN和BM相交所得最大角的度數(shù)
120°
;
(3)將△ACM繞C點按順時針方向旋轉(zhuǎn)180°,使A點落在BC上,請對照原題圖形在圖2中畫出符合要求的圖形(不寫作法,保留痕跡);
(4)探究圖2中AN和BM相交所得的最大角的度數(shù)有無變化
不變
(填變化或不變);
(5)在(3)所得到的圖形2中,請?zhí)骄俊癆N=BM”這一結(jié)論是否成立,若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知點C為線段AB上一點,分別以AC、BC為邊在線段AB同側(cè)作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直線AE與BD交于點F,
(1)如圖1,若∠ACD=60°,則∠AFB=
 
;如圖2,若∠ACD=90°,則∠AFB=
 
;如圖3,若∠ACD=120°,則∠AFB=
 
;
(2)如圖4,若∠ACD=α,則∠AFB=
 
(用含α的式子表示);
(3)將圖4中的△ACD繞點C順時針旋轉(zhuǎn)任意角度(交點F至少在BD、AE中的一條線段上),變成如圖5所示的情形,若∠ACD=α,則∠AFB與α的有何數(shù)量關(guān)系?并給予證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:Rt△ABC斜邊上的高為2.4,將這個直角三角形放置在平面直角坐標(biāo)系中,使其斜邊AB與x軸重合,直角頂點C落在y軸正半軸上,點A的坐標(biāo)為(-1.8,0).
(1)求點B的坐標(biāo)和經(jīng)過點A、B、C的拋物線的關(guān)系式;
(2)如圖①,點M為線段AB上的一個動點(不與點A、B重合),MN∥AC,交線段BC于點N,MP∥BC,交線段AC于點P,連接PN,△MNP是否有最大面積?若有,求出△MNP的最大面積;若沒有,請說明理由;
(3)如圖②,直線l是經(jīng)過點C且平行于x軸的一條直線,如果△ABC的頂點C在直線l上向右平移m,(2)中的其它條件不變,(2)中的結(jié)論還成立嗎?請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•樂山)如圖,已知拋物線C經(jīng)過原點,對稱軸x=-3與拋物線相交于第三象限的點M,與x軸相交于點N,且tan∠MON=3.
(1)求拋物線C的解析式;
(2)將拋物線C繞原點O旋轉(zhuǎn)180°得到拋物線C′,拋物線C′與x軸的另一交點為A,B為拋物線C′上橫坐標(biāo)為2的點.
①若P為線段AB上一動點,PD⊥y軸于點D,求△APD面積的最大值;
②過線段OA上的兩點E,F(xiàn)分別作x軸的垂線,交折線O-B-A于點E1,F(xiàn)1,再分別以線段EE1,F(xiàn)F1為邊作如圖2所示的等邊△EE1E2,等邊△FF1F2.點E以每秒1個單位長度的速度從點O向點A運動,點F以每秒1個單位長度的速度從點A向點O運動.當(dāng)△EE1E2與△FF1F2的某一邊在同一直線上時,求時間t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線y=ax2+bx+c的頂點為C(1,0),且與直線l:y=x+m交y軸于同一點B(0,1),與直線l交于另一點A,D為拋物線的對稱軸與直線l的交點,P為線段AB上的一動點(不與點A、B重合),過點P作y軸的平行線交拋物線于點E.
(1)求拋物線和直線l的函數(shù)解析式,及另一交點A的坐標(biāo);
(2)求△ABE的最大面積是多少?
(3)問是否存在這樣的點P,使四邊形PECD為平行四邊形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案