【題目】ABC中,ABAC5cm,AB邊上的高為3,則sinB_____

【答案】

【解析】

如圖,作CDABD,則CD=3,利用勾股定理計算出AD=4,討論:當(dāng)CDABC的內(nèi)部時,如圖1BD=1,則利用勾股定理計算出BC,然后根據(jù)正弦的定義求解;當(dāng)CDABC的外部時,如圖2BD=9,同樣利用勾股定理計算出BC,然后根據(jù)正弦的定義求解.

解:如圖,作CDABD,則CD3,

RtADC中,AD,

當(dāng)CDABC的內(nèi)部時,如圖1,BDABAD541,

RtBDC中,BC

sinB;

當(dāng)CDABC的外部時,如圖2,BDAB+AD5+49,

RtBDC,BC,

sinB;

綜上所述,sinB

故答案為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABCD中,AB=4,BC=3,∠BAD=120°,E為BC上一動點(不與B點重合),作EF⊥AB于F,F(xiàn)E,DC的延長線交于點G,設(shè)BE=x,△DEF的面積為S.

(1)求證:△BEF∽△CEG;

(2)求用x表示S的函數(shù)表達式,并寫出x的取值范圍;

(3)當(dāng)E點運動到何處時,S有最大值,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)yx2+bx+c的圖象與x軸交于A、B兩點,A點在原點的左側(cè),B點的坐標(biāo)為(3,0),與y軸交于C0,﹣3)點,點P是直線BC下方的拋物線上一動點.

1)求這個二次函數(shù)的表達式.

2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POPC,那么是否存在點P,使四邊形POPC為菱形?若存在,請求出此時點P的坐標(biāo);若不存在,請說明理由.

3)當(dāng)點P運動到什么位置時,四邊形ABPC的面積最大?求出此時P點的坐標(biāo)和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點E,F在對角線BD上,,迎接AF,CE.

1)求證:;

2)試判斷四邊形AECF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線ABx軸交于點B,與y軸交于點A,直線AB與反比例函數(shù)ym0)在第一象限的圖象交于點C、點D,其中點C的坐標(biāo)為(18),點D的坐標(biāo)為(4,n).

1)分別求m、n的值;

2)連接OD,求△ADO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是∠AOB內(nèi)任意一點,且∠AOB=40°,點M和點N分別是射線OA和射線OB上的動點,當(dāng)△PMN周長取最小值時,則∠MPN的度數(shù)為( )

A. 140° B. 100° C. 50° D. 40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某市郊外景區(qū)內(nèi)一條筆直的公路a經(jīng)過三個景點A、B、C,景區(qū)管委會又開發(fā)了風(fēng)景優(yōu)美的景點D,經(jīng)測量景點D位于景點A的北偏東30°方向8km處,位于景點B的正北方向,還位于景點C的北偏西75°方向上,已知AB=5km

1)景區(qū)管委會準備由景點D向公路a修建一條距離最短的公路,不考慮其它因素,求出這條公路的長;(結(jié)果精確到0.1km

2)求景點C與景點D之間的距離.(結(jié)果精確到1km

(參考數(shù)據(jù): =1.73 =2.24,sin53°=cos37°=0.80,sin37°=cos53°=0.60tan53°=1.33,tan37°=0.75,sin38°=cos52°=0.62,sin52°=cos38°=0.79tan38°=0.78,tan52°=1.28sin75°=0.97,cos75°=0.26tan75°=3.73.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】被譽為“中原第一高樓”的鄭州會展賓館(俗稱“大玉米”)坐落在風(fēng)景如畫的如意湖畔,是來鄭州觀光的游客留影的最佳景點,學(xué)完了三角函數(shù)知識后,劉明和王華同學(xué)決定用自己學(xué)到的知識測量“大玉米”的高度他們制訂了測量方案,并利用課余時間完成了實地測量,測量項目及結(jié)果如下表

請你幫助該小組根據(jù)上表中的測量數(shù)據(jù),求出鄭州會展賓館的高度.

(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:三角形的三條角平分線交于一點,這個點稱為三角形的內(nèi)心(三角形內(nèi)切圓的圓心).現(xiàn)在規(guī)定:如果四邊形的四個角的角平分線交于一點,我們把這個點也成為四邊形的內(nèi)心”.

(1)試舉出一個有內(nèi)心的四邊形.

(2)如圖1,已知點O是四邊形ABCD的內(nèi)心,求證:AB+CD=AD+BC.

(3)如圖2Rt△ABC中,∠C=90°.O△ABC的內(nèi)心.若直線DE截邊AC、BC于點D.E,且O仍然是四邊形ABED的內(nèi)心.這樣的直線DE可畫多少條?請在圖2中畫出一條符合條件的直線DE,并簡單說明作法.

(4)問題(3)中,若AC=3,BC=4,滿足條件的一條直線DE∥AB,求DE的長.

查看答案和解析>>

同步練習(xí)冊答案