.如圖,A、B兩地之間有一座山,汽車原來從A地到B地經(jīng)過C地沿折線A→C→B行駛,現(xiàn)開通隧道后,汽車直接沿直線AB行駛.已知AC=10千米,∠A=30°,∠B=45°.則隧道開通后,汽車從A地到B地比原來少走多少千米?(結(jié)果保留根號)
科目:初中數(shù)學(xué) 來源: 題型:
已知:二次函數(shù)的圖象與x軸交于點A,B(A點在B點的左側(cè)),與y軸交于點C,△ABC的面積為12.
(1)①填空:二次函數(shù)圖象的對稱軸為 ;
②求二次函數(shù)的解析式;
(2) 點D的坐標(biāo)為(-2,1),點P在二次函數(shù)圖象上,∠ADP為銳角,且,求點P的橫坐標(biāo);
(3)點E在x軸的正半軸上,,點O與點關(guān)于EC所在直線對稱.作⊥于點N,交EC于點M.若EM·EC=32,求點E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知A、B是反比例函數(shù)上的兩點,BC∥x
軸,交y軸于C,動點P從坐標(biāo)原點O出發(fā),沿O→A→B→C勻速運動,
終點為C,過運動路線上任意一點P作PM⊥x軸于M,PN⊥y軸于N,設(shè)四
邊形OMPN的面積為S,P點運動的時間為t,則S關(guān)于t的函數(shù)圖象大致
是( 。
|
A B C D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,小明同學(xué)用自制的直角三角形紙板DEF測量樹的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條直角邊DE=0.4m,EF=0.2cm,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
閱讀理解:
如圖1,在四邊形ABCD的邊AB上任取一點E(點E不與點A、點B重合),分別連接ED,EC,可以把
四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上
的相似點;如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強相似點.解決問題:
(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;
(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點均在正方形網(wǎng)格(網(wǎng)格中每個小正方
形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖2中畫出矩形ABCD的邊AB上的一個強相似點E;
拓展探究:
(3)如圖3,將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處.若點E恰好是四邊形ABCM的邊AB上的一個強相似點,試探究AB和BC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線和直線. 當(dāng)y1>y2時,x的取值范圍是
A.0<x<2 | B.x<0或x>2 | C.x<0或x>4 | D.0<x<4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,二次函數(shù)的圖象與一次函數(shù)的圖象交于,兩點. C為二次函數(shù)圖象的頂點.
(1)求二次函數(shù)的解析式;
(2)定義函數(shù)f:“當(dāng)自變量x任取一值時,x對應(yīng)的函數(shù)值分別為y1或y2,若y1≠y2,函數(shù)f的函數(shù)值等于y1、y2中的較小值;若y1=y2,函數(shù)f的函數(shù)值等于y1(或y2).” 當(dāng)直線(k >0)與函數(shù)f的圖象只有兩個交點時,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com