【題目】說明理由

如圖,∠1+∠2=230°,b∥c, 則∠1、∠2、∠3、∠4各是多少度?

解:∵ ∠1=∠2 (_________________________)

∠1+∠2=230°

∴∠1 =∠2 =________(填度數(shù))

bc

∴∠4 =∠2= ________(填度數(shù))

( )

∠2 +∠3 =180° ( )

∴∠3 =180°-∠2 =_________(填度數(shù))

【答案】對頂角相等, 115°, 115°, 兩相線平行,內(nèi)錯角相等.兩相線平行同旁內(nèi)角互補. 65°.

【解析】根據(jù)對頂角相等求出∠1和∠2,根據(jù)平行線的性質(zhì)求出∠4=∠2,2+∠3=180°,代入求出即可.

解:∵∠1=∠2(對頂角相等),∠1+∠2=230°,
∴∠1=∠2=115°,
∵b∥c,
∴∠4=∠2=115°,(兩直線平行,內(nèi)錯角相等),
∠2+∠3=180°,(兩直線平行,同旁內(nèi)角互補),
∴∠3=180°-∠2=65°,
故答案為:對頂角相等,115°,115°,兩直線平行,內(nèi)錯角相等,兩直線平行,同旁內(nèi)角互補,65°.

“點睛”本題考查了對頂角相等,平行線的性質(zhì)的應(yīng)用,注意:平行線的性質(zhì)有:①兩直線平行,同位角相等,②兩直線平行,內(nèi)錯角相等,③兩直線平行,同旁內(nèi)角互補,題目比較好,難度適中.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標系中,點AB的坐標分別為(1,4)和(3,0),點Cy軸上的一個動點,且A、B、C三點不在同一條直線上,當△ABC的周長最小時,點C的坐標是

A.0,0B.0,1C.02D.0,3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,動點P從點B出發(fā),沿BC,CDDA運動到點A停止,設(shè)點P運動路程為x,ABP的面積為y,如果y關(guān)于x的函數(shù)圖象如圖(2)所示,則矩形ABCD的面積是( 。

A. 10B. 16C. 20D. 36

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)給出的數(shù)軸及已知條件,解答下面的問題:

1)已知點A,B,C表示的數(shù)分別為1,﹣2.5,﹣3觀察數(shù)軸,B,C兩點之間的距離為   ;與點A的距離為3的點表示的數(shù)是   

2)若將數(shù)軸折疊,使得A點與C點重合,則與B點重合的點表示的數(shù)是   ;若此數(shù)軸上MN兩點之間的距離為2020MN的左側(cè)),且當A點與C點重合時,M點與N點也恰好重合,則MM兩點表示的數(shù)分別是:M   ,N   

3)若數(shù)軸上P,Q兩點間的距離為mPQ左側(cè)),表示數(shù)n的點到P,Q兩點的距離相等,則將數(shù)軸折疊,使得P點與Q點重合時,P,Q兩點表示的數(shù)分別為:P   Q   .(用含m,n的式子表示這兩個數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點D坐標(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017黑龍江省龍東地區(qū))已知:△AOB和△COD均為等腰直角三角形,∠AOB=∠COD=90°.連接ADBC,點HBC中點,連接OH

1)如圖1所示,易證:OH=ADOHAD(不需證明)

2)將△COD繞點O旋轉(zhuǎn)到圖2,圖3所示位置時,線段OHAD又有怎樣的關(guān)系,并選擇一個圖形證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠為了檢驗甲、乙兩車間生產(chǎn)的同一種零件的直徑的合格情況,隨機各抽取了10個樣品進行檢測,已知零件的直徑均為整數(shù),整理數(shù)據(jù)如下:(單位:

170174

175179

180184

185189

甲車間

1

3

4

2

乙車間

0

6

2

2

1)分別計算甲、乙兩車間生產(chǎn)的零件直徑的平均數(shù);

2)直接說出甲、乙兩車間生產(chǎn)的零件直徑的中位數(shù)都在哪個小組內(nèi),眾數(shù)是否在其相應(yīng)的小組內(nèi)?

3)若該零件的直徑在的范圍內(nèi)為合格,甲、乙兩車間哪一個車間生產(chǎn)的零件直徑合格率高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ABCD,AC平分∠BADCEADABE

(1)求證:四邊形AECD是菱形;

(2)若點EAB的中點,試判斷ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,按以下步驟作圖:①分別以點A和點C為圓心,以大于AC的長為半徑作弧,兩弧相交于點MN;②作直線MNCD于點E,若AB=8AD=6,則EC=_____________

查看答案和解析>>

同步練習(xí)冊答案