【題目】如圖,在矩形ABCD中,點F在AD上,點E在BC上,把這個矩形沿EF折疊后,使點D恰好落在BC邊上的G點處,若矩形面積為4 且∠AFG=60°,GE=2BG,則折痕EF的長為(
A.1
B.
C.2
D.

【答案】C
【解析】解:由折疊的性質(zhì)可知,DF=GF,HE=CE,GH=DC,∠DFE=∠GFE. ∵∠GFE+∠DFE=180°﹣∠AFG=120°,
∴∠GFE=60°.
∵AF∥GE,∠AFG=60°,
∴∠FGE=∠AFG=60°,
∴△GEF為等邊三角形,
∴EF=GE.
∵∠FGE=60°,∠FGE+∠HGE=90°,
∴∠HGE=30°.
在Rt△GHE中,∠HGE=30°,
∴GE=2HE=CE,
∴GH= = HE= CE.
∵GE=2BG,
∴BC=BG+GE+EC=4EC.
∵矩形ABCD的面積為4 ,
∴4EC EC=4
∴EC=1,EF=GE=2.
故選C.
【考點精析】解答此題的關(guān)鍵在于理解矩形的性質(zhì)的相關(guān)知識,掌握矩形的四個角都是直角,矩形的對角線相等,以及對翻折變換(折疊問題)的理解,了解折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某電器經(jīng)營業(yè)主計劃購進一批同種型號的冷風扇和普通電風扇,若購進8臺冷風扇和20臺普通電風扇,需要資金17400元,若購進10臺冷風扇和30臺普通電風扇,需要資金22500元.求冷風扇和普通電風扇每臺的采購價各是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式(組)

1)解不等式1,并在數(shù)軸上表示它的解集.

2)解不等式組,并求出它的所有非負整數(shù)解之和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】茜茜受《烏鴉喝水》故事的啟發(fā),利用量筒、大球和小球進行了如下操作,請根據(jù)圖中給出的信息,解答下列問題:

1)放入一個小球水面升高______cm,放入一個大球水面升高______cm

2)如果要使水面上升到50cm,應放入大球、小球各多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片ABCD中,AD=4cm,把紙片沿直線AC折疊,點B落在E處,AE交DC于點O,若AO=5cm,則AB的長為(
A.6cm
B.7cm
C.8cm
D.9cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個三角形的紙片ABC,其中∠A=C,

1)把△ABC紙片按 (如圖1) 所示折疊,使點A落在BC邊上的點F處,DE是折痕.說明 BCDF;

2)把△ABC紙片沿DE折疊,當點A落在四邊形BCED內(nèi)時 (如圖2),探索∠C與∠1+2之間的大小關(guān)系,并說明理由;

3)當點A落在四邊形BCED外時 (如圖3),探索∠C與∠1、∠2之間的大小關(guān)系.(直接寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)一種圓環(huán)甲(如圖1),它的外圓直徑是8厘米,環(huán)寬1厘米。

①如果把這樣的2個圓環(huán)扣在一起并拉緊(如圖2),長度為 厘米;

②如果用n個這樣的圓環(huán)相扣并拉緊,長度為 厘米。

(2)另一種圓環(huán)乙,像(1)中圓環(huán)甲那樣相扣并拉緊,

3個圓環(huán)乙的長度是28cm,5個圓環(huán)乙的長度是44cm,求出圓環(huán)乙的外圓直徑和環(huán)寬;

②現(xiàn)有n(n2)個圓環(huán)甲和n(n2)個圓環(huán)乙,將它們像(1)中那樣相扣并拉緊,長度用n的代數(shù)式表示為多少厘米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(8分) 小麗想用一塊面積為400cm2的正方形紙片,沿著邊的方向裁處一塊面積為300cm2的長方形紙片.(1)請幫小麗設(shè)計一種可行的裁剪方案;

(2)若使長方形的長寬之比為3:2,小麗能用這塊紙片裁處符合要求的紙片嗎?若能,請幫小麗設(shè)計一種裁剪方案,若不能,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù) 的圖象與一次函數(shù) 的圖象交于點A(1,4)、點B(-4,n).

(1)求 的值;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量 的取值范圍.

查看答案和解析>>

同步練習冊答案