【題目】“大美濕地,水韻鹽城”.某校數(shù)學(xué)興趣小組就“最想去的鹽城市旅游景點(diǎn)”隨機(jī)調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個(gè)最想去的景點(diǎn),下面是根據(jù)調(diào)查結(jié)果進(jìn)行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計(jì)圖:
請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)求被調(diào)查的學(xué)生總?cè)藬?shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求扇形統(tǒng)計(jì)圖中表示“最想去景點(diǎn)D”的扇形圓心角的度數(shù);
(3)若該校共有800名學(xué)生,請(qǐng)估計(jì)“最想去景點(diǎn)B“的學(xué)生人數(shù).

【答案】
(1)解:被調(diào)查的學(xué)生總?cè)藬?shù)為8÷20%=40(人)
(2)解:最想去D景點(diǎn)的人數(shù)為40﹣8﹣14﹣4﹣6=8(人),

補(bǔ)全條形統(tǒng)計(jì)圖為:

扇形統(tǒng)計(jì)圖中表示“最想去景點(diǎn)D”的扇形圓心角的度數(shù)為 ×360°=72°


(3)解:800× =280,

所以估計(jì)“最想去景點(diǎn)B“的學(xué)生人數(shù)為280人


【解析】(1)用最想去A景點(diǎn)的人數(shù)除以它所占的百分比即可得到被調(diào)查的學(xué)生總?cè)藬?shù);(2)先計(jì)算出最想去D景點(diǎn)的人數(shù),再補(bǔ)全條形統(tǒng)計(jì)圖,然后用360°乘以最想去D景點(diǎn)的人數(shù)所占的百分比即可得到扇形統(tǒng)計(jì)圖中表示“最想去景點(diǎn)D”的扇形圓心角的度數(shù);(3)用800乘以樣本中最想去A景點(diǎn)的人數(shù)所占的百分比即可.
【考點(diǎn)精析】利用扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖對(duì)題目進(jìn)行判斷即可得到答案,需要熟知能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛客車(chē)從甲地開(kāi)往乙地,一輛出租車(chē)從乙地開(kāi)往甲地,兩車(chē)同時(shí)出發(fā),設(shè)客車(chē)離甲地的距離為y1千米,出租車(chē)離甲地的距離為y2千米,兩車(chē)行駛的時(shí)間為x小時(shí),y1、y2關(guān)于x的函數(shù)圖象如圖所示:

(1)根據(jù)圖象,直接寫(xiě)出y1、y2關(guān)于x的函數(shù)圖象關(guān)系式;
(2)若兩車(chē)之間的距離為S千米,請(qǐng)寫(xiě)出S關(guān)于x的函數(shù)關(guān)系式;
(3)甲、乙兩地間有A,B兩個(gè)加油站,相距200千米,若客車(chē)進(jìn)入A加油站時(shí),出租車(chē)恰好進(jìn)入B加油站,求A加油站離甲地的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校數(shù)學(xué)興趣小組在一次數(shù)學(xué)課外活動(dòng)中,隨機(jī)抽查該校10名同學(xué)參加今年初中學(xué)業(yè)水平考試的體育成績(jī),得到結(jié)果如下表所示:

成績(jī)/分

36

37

38

39

40

人數(shù)/人

1

2

1

4

2

下列說(shuō)法正確的是( )
A.這10名同學(xué)體育成績(jī)的中位數(shù)為38分
B.這10名同學(xué)體育成績(jī)的平均數(shù)為38分
C.這10名同學(xué)體育成績(jī)的眾數(shù)為39分
D.這10名同學(xué)體育成績(jī)的方差為2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線x=2,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(4,0),其部分圖象如圖所示,下列結(jié)論: ①拋物線過(guò)原點(diǎn);
②4a+b+c=0;
③a﹣b+c<0;
④拋物線的頂點(diǎn)坐標(biāo)為(2,b);
⑤當(dāng)x<2時(shí),y隨x增大而增大.
其中結(jié)論正確的是(

A.①②③
B.③④⑤
C.①②④
D.①④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:
在平面直角坐標(biāo)系xOy中,點(diǎn)P(x0 , y0)到直線Ax+By+C=0的距離公式為:d=
例如:求點(diǎn)P0(0,0)到直線4x+3y﹣3=0的距離.
解:由直線4x+3y﹣3=0知,A=4,B=3,C=﹣3,
∴點(diǎn)P0(0,0)到直線4x+3y﹣3=0的距離為d= =
根據(jù)以上材料,解決下列問(wèn)題:
(1)點(diǎn)P1(3,4)到直線y=﹣ x+ 的距離為;
(2)已知:⊙C是以點(diǎn)C(2,1)為圓心,1為半徑的圓,⊙C與直線y=﹣ x+b相切,求實(shí)數(shù)b的值;
(3)如圖,設(shè)點(diǎn)P為問(wèn)題2中⊙C上的任意一點(diǎn),點(diǎn)A,B為直線3x+4y+5=0上的兩點(diǎn),且AB=2,請(qǐng)求出SABP的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合題

(1)【探索發(fā)現(xiàn)】如圖①,是一張直角三角形紙片,∠B=60°,小明想從中剪出一個(gè)以∠B為內(nèi)角且面積最大的矩形,經(jīng)過(guò)多次操作發(fā)現(xiàn),當(dāng)沿著中位線DE、EF剪下時(shí),所得的矩形的面積最大,隨后,他通過(guò)證明驗(yàn)證了其正確性,并得出:矩形的最大面積與原三角形面積的比值為
(2)【拓展應(yīng)用】如圖②,在△ABC中,BC=a,BC邊上的高AD=h,矩形PQMN的頂點(diǎn)P、N分別在邊AB、AC上,頂點(diǎn)Q、M在邊BC上,則矩形PQMN面積的最大值為 . (用含a,h的代數(shù)式表示)
(3)【靈活應(yīng)用】如圖③,有一塊“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明從中剪出了一個(gè)面積最大的矩形(∠B為所剪出矩形的內(nèi)角),求該矩形的面積.
(4)【實(shí)際應(yīng)用】如圖④,現(xiàn)有一塊四邊形的木板余料ABCD,經(jīng)測(cè)量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC= ,木匠徐師傅從這塊余料中裁出了頂點(diǎn)M、N在邊BC上且面積最大的矩形PQMN,求該矩形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線PT與⊙O相切于點(diǎn)T,直線PO與⊙O相交于A,B兩點(diǎn).
(1)求證:PT2=PAPB;
(2)若PT=TB= ,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形紙片ABCD中,AB=5,BC=3,先按圖(2)操作:將矩形紙片ABCD沿過(guò)點(diǎn)A的直線折疊,使點(diǎn)D落在邊AB上的點(diǎn)E處,折痕為AF;再按圖(3)操作,沿過(guò)點(diǎn)F的直線折疊,使點(diǎn)C落在EF上的點(diǎn)H處,折痕為FG,則A、H兩點(diǎn)間的距離為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,CD是⊙O的一條弦,且CD⊥AB于點(diǎn)E,CD=4 ,AE=2,則⊙O的半徑為

查看答案和解析>>

同步練習(xí)冊(cè)答案