【題目】如圖,⊙O是△ABC的內(nèi)切圓,若∠ABC=70°,∠ACB=40°,則∠BOC=°.

【答案】125
【解析】解:∵⊙O是△ABC的內(nèi)切圓,
∴OB平分∠ABC,OC平分∠ACB,
∴∠OBC= ∠ABC=35°,∠OCB= ∠ACB=20°,
∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣35°﹣20°=125°.
所以答案是125.
【考點精析】解答此題的關(guān)鍵在于理解圓周角定理的相關(guān)知識,掌握頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半,以及對三角形的內(nèi)切圓與內(nèi)心的理解,了解三角形的內(nèi)切圓的圓心是三角形的三條內(nèi)角平分線的交點,它叫做三角形的內(nèi)心.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,B=90°,AB=16cm,BC=12cm,P、Q是ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為t秒.

(1)出發(fā)2秒后,求PQ的長;

(2)當點Q在邊BC上運動時,出發(fā)幾秒鐘后,PQB能形成等腰三角形?

(3)當點Q在邊CA上運動時,求能使BCQ成為等腰三角形的運動時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,B兩種機器人都被用來搬運化工原料,A型機器人比B型機器人每小時多搬運40千克,A型機器人搬運1200千克所用時間與B型機器人搬運800千克所用時間相等.設(shè)B型機器人每小時搬運化工原料x千克,根據(jù)題意可列方程為(
A. =
B. =
C. =
D. =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,點P自點AD1cm/s的速度運動,到D點即停止.點Q自點CB2cm/s的速度運動,到B點即停止,直線PQ截梯形為兩個四邊形.問當P,Q同時出發(fā),幾秒時其中一個四邊形為平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ADBC邊上的高,AE、BF分別是∠BAC、ABC的平分線,∠BAC=50°,ABC=60°,則∠EAD+ACD=( 。

A. 75° B. 80° C. 85° D. 90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上,張老師舉了下面的例題:

1 等腰三角形中,,求的度數(shù).(答案:

2 等腰三角形中,,求的度數(shù).(答案:

張老師啟發(fā)同學(xué)們進行變式,小敏編了如下一題:

變式 等腰三角形中,,求的度數(shù).

(1)請你解答以上的變式題.

(2)解(1)后,小敏發(fā)現(xiàn),的度數(shù)不同,得到的度數(shù)的個數(shù)也可能不同.如果在等腰三角形中,設(shè),當有三個不同的度數(shù)時,請你探索的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果批發(fā)市場規(guī)定,一次購買蘋果不超過100kg(包括100kg),批發(fā)價為5元,如果一次購買100kg以上蘋果,超過100kg的部分蘋果價格打8折.

(I)請?zhí)顚懴卤?/span>

購買量/kg

0

50

100

150

200

付款金額/元

0

250

_

700

__

(Ⅱ)寫出付款金額關(guān)于購買量的函數(shù)解析式;

(Ⅲ)如果某人付款2100元,求其購買蘋果的數(shù)量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式 的解集在數(shù)軸上表示為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在同一直角坐標系中,函數(shù)y= 與y=kx+k2的大致圖象是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案