【題目】已知拋物線y=ax2+bx+c(a≠0)過點(diǎn)A(1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,OC=3.
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)點(diǎn)P為拋物線在直線BC下方圖形上的一動(dòng)點(diǎn),當(dāng)△PBC面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)若點(diǎn)Q為線段OC上的一動(dòng)點(diǎn),問:AQ+QC是否存在最小值?若存在,求岀這個(gè)最小值;若不存在,請說明理由.
【答案】(1)y=x2﹣4x+3,則頂點(diǎn)D(2,﹣1);(2)P(,﹣);(3)H,而點(diǎn)A(1,0),則AH=,即:AQ+QC的最小值為.
【解析】
將坐標(biāo)(1,0),B(3,0)代入計(jì)算即可得出拋物線的解析式,即可計(jì)算出D的坐標(biāo).
將點(diǎn)B、C的坐標(biāo)代入一次函數(shù)表達(dá)式計(jì)算,設(shè)點(diǎn)P(x,x2﹣4x+3),則點(diǎn)H(x,﹣x+3),求出x的值即可.
(3)存在,過點(diǎn)C作與y軸夾角為30°的直線CH,過點(diǎn)A作AH⊥CH,垂足為H,
則HQ=CQ,Q+QC最小值=AQ+HQ=AH,求出k值,再將A的坐標(biāo)代入計(jì)算即可解答.
(1)函數(shù)的表達(dá)式為:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),即:3a=3,解得:a=1,
故拋物線的表達(dá)式為:y=x2﹣4x+3,則頂點(diǎn)D(2,﹣1);
(2)將點(diǎn)B、C的坐標(biāo)代入一次函數(shù)表達(dá)式:y=mx+n并解得:
直線BC的表達(dá)式為:y=﹣x+3,過點(diǎn)P作y軸的平行線交BC于點(diǎn)H,
設(shè)點(diǎn)P(x,x2﹣4x+3),則點(diǎn)H(x,﹣x+3),
則S△PBC=PH×OB=(﹣x+3﹣x2+4x﹣3)=(﹣x2+3x),
∵﹣<0,故S△PBC有最大值,此時(shí)x=,故點(diǎn)P(,﹣);
(3)存在,理由:
如上圖,過點(diǎn)C作與y軸夾角為30°的直線CH,過點(diǎn)A作AH⊥CH,垂足為H,
則HQ=CQ,Q+QC最小值=AQ+HQ=AH,
直線HC所在表達(dá)式中的k值為,直線HC的表達(dá)式為:y=x+3…①
則直線AH所在表達(dá)式中的k值為﹣ ,
則直線AH的表達(dá)式為:y=﹣x+s,將點(diǎn)A的坐標(biāo)代入上式并解得:
則直線AH的表達(dá)式為:y=﹣x+…②,
聯(lián)立①②并解得:x=,
故點(diǎn)H(,),而點(diǎn)A(1,0),則AH=,即:AQ+QC的最小值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小明遇到下面一個(gè)問題:
如圖1所示,是的角平分線,,求的值.
小明發(fā)現(xiàn),分別過,作直線的垂線,垂足分別為.通過推理計(jì)算,可以解決問題(如圖2).請回答,________.
參考小明思考問題的方法,解決問題:
如圖3,四邊形中,平分,,.與相交于點(diǎn).
(1)=______.
(2)=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)A(3,4)是反比例函數(shù)圖象上一點(diǎn),則下列說法正確的是( 。
A. 圖象分別位于二、四象限B. 點(diǎn)(2,﹣6)在函數(shù)圖象上
C. 當(dāng)x<0時(shí),y隨x的增大而減小D. 當(dāng)y≤4時(shí),x≥3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知A(2,0)、B(3,1)、C(1,3).
(1)畫出△ABC沿x軸負(fù)方向平移2個(gè)單位后得到的△A1B1C1,并寫出B1的坐標(biāo) ;
(2)以A1點(diǎn)為旋轉(zhuǎn)中心,將△A1B1C1逆時(shí)針方向旋轉(zhuǎn)90°得△A1B2C2,畫出△A1B2C2,并寫出C2的坐標(biāo) ;
(3)直接寫出過B、B1、C2三點(diǎn)的圓的圓心坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P(1,2),⊙P經(jīng)過原點(diǎn)O,交y軸正半軸于點(diǎn)A,點(diǎn)B在⊙P上,∠BAO=45°,則點(diǎn)B的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進(jìn)價(jià)為每件40元,售價(jià)為每件50元,每個(gè)月可賣出210件;如果每件商品的售價(jià)每上漲1元,則每個(gè)月少賣10件(每件售價(jià)不能高于65元),設(shè)每件商品的售價(jià)上漲元(為正整數(shù)),每個(gè)月的銷售利潤為元.
(1)求與的函數(shù)關(guān)系式并直接寫出自變量的取值范圍;
(2)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤?最大月利潤是多少元?
(3)每件商品的售價(jià)定為多少元時(shí),每個(gè)月的利潤恰為2 200元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一張長12dm,寬6dm的長方形紙板,將紙板四個(gè)角各剪去一個(gè)同樣的邊長為xdm的正方形,然后將四周突出部分折起,可制成一個(gè)無蓋長方體紙盒.
(1)無蓋方盒盒底的長為 dm,寬為 dm(用含x的式子表示).
(2)若要制作一個(gè)底面積是40dm2的一個(gè)無蓋長方體紙盒,求剪去的正方形邊長x.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,cm,cm,點(diǎn)從點(diǎn)出發(fā)沿 以2cm/s的速度向終點(diǎn)勻速運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā)沿以1 cm/s的速度向終點(diǎn)勻速運(yùn)動(dòng),、中有一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng).
(1)幾秒后,點(diǎn)、D的距離是點(diǎn)、的距離的2倍;
(2)幾秒后,PDQ是直角三角形;
(3)在運(yùn)動(dòng)過程中,經(jīng)過 秒,以為圓心,為半徑的⊙與對角線相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的頂點(diǎn)C,D分別在反比例函數(shù)y=(x>0).y=(x>0)的圖象上,頂點(diǎn)A,B在x軸上,連接OC,交DA于點(diǎn)E,則=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com