【題目】如圖,在正方形ABCD中,點MN分別在AB、BC上,AB=4,AM=1BN=.

(1)求證:ΔADMΔBMN;

(2)求∠DMN的度數(shù).

【答案】1)見解析;(290°

【解析】

1)根據(jù),,即可推出,再加上∠A=B=90°,就可以得出△ADM∽△BMN;

2)由△ADM∽△BMN就可以得出∠ADM=BMN,又∠ADM+AMD=90°,就可以得出∠AMD+BMN=90°,從而得出∠DMN的度數(shù).

(1)AD=4,AM=1

MB=AB-AM=4-1=3

又∵∠A=B=90°

ΔADMΔBMN

(2)ΔADMΔBMN

∴∠ADM=BMN

∴∠ADM+AMD=90°

∴∠AMD+BMN=90°

∴∠DMN=180°-BMN-AMD=90°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則

①二次函數(shù)的最大值為a+b+c;

a﹣b+c<0;

b2﹣4ac<0;

④當y>0時,﹣1<x<3,其中正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠C=90°,ADDB,點EAB的中點,DEBC

1)求證:BD平分∠ABC;

2)連接EC,若∠A=30°,DC,求EC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線yx2x軸交于點B,與y軸交于點A,拋物線yax2x+c經(jīng)過A,B兩點,與x軸的另一交點為C

1)求拋物線的解析式;

2M為拋物線上一點,直線AMx軸交于點N,當時,求點M的坐標;

3P為拋物線上的動點,連接AP,當∠PAB與△AOB的一個內(nèi)角相等時,直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列圖形:

1)可知tanα,tanβ,用畫圖法tanα+β)的值,具體解法如下:

第一步:如圖1所示,構(gòu)造符合題意兩個背靠背的直角三角形;

第二步:如圖2所示,將圖1中所有數(shù)據(jù)同比例擴大3倍;

第三步:如圖3所示,依托中間的RtABD的各頂點構(gòu)造水平﹣﹣豎直輔助線,構(gòu)造出一線三直角基本相似型,并補成矩形ACEF;由圖可知tanα+β)=   

2)依據(jù)(1)的方法,已知tanαtanβ,用畫圖法tanα+β)的值.

3)擴展延伸,已知tanα,tanβ,直接寫出tanαβ)=   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】蜜蜂是自然界神奇的“建筑師”,它能用最少的材料造成最牢固的建筑物“蜂窩”,觀察下列的“蜂窩圖”.

1)若““中每條邊看成1個建筑單位,則第1個圖形中共有19個建筑單位,第2個圖案中共有   個建筑單位:第3個圖案中共有   個建筑單位;第n個圖案中共有   個建筑單位.(用含有n的代數(shù)式表示)

2)若現(xiàn)在有74個建筑單位材料,能建成符合上述規(guī)律的“蜂窩”嗎?若能求出它符合第幾圖形,若不能請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,將矩形ABCD折疊,使點C與點A重合,點D落在點G處,折痕為EF

1)如圖1,求證:BEGF

2)如圖2,連接CFDG,若CE2BE,在不添加任何輔助線的情況下,請直接寫出圖2中的四個三角形,使寫出的每個三角形都為等腰三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校準備從文教商店購買AB兩種不同型號的筆記本獎勵學生,已知購買2A型和3B型筆記本共需23元,購買3A型和4B型筆記本共需32

1)分別求出A、B型筆記本的單價?

2)學校準備購買AB兩種筆記本共100本,經(jīng)過協(xié)商文教店老板給一定的優(yōu)惠,A型筆記本打九折,B型筆記本打八折,已知A型筆記本進價2.6元,B型筆記本進價2.8元,若文教店老板想這次交易中賺到不少于110元錢,則賣出A型筆記本不超過多少本?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊長是3,,連接交于點,并分別與邊、交于點,連接,下列結(jié)論:①;②;③;④當時,.正確結(jié)論的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案