【題目】某汽車制造廠開發(fā)一款新式電動(dòng)汽車,計(jì)劃一年生產(chǎn)安裝輛.由于抽調(diào)不出足夠的熟練工來完成新式電動(dòng)汽車的安裝,工廠決定招聘一些新工人.他們經(jīng)過培訓(xùn)后上崗,也能獨(dú)立進(jìn)行電動(dòng)汽車的安裝.生產(chǎn)開始后,調(diào)研部門發(fā)現(xiàn):名熟練工和名新工人每月可安裝輛電動(dòng)汽車;名熟練工和名新工人每月可安裝輛電動(dòng)汽車.
(1)每名熟練工和新工人每月分別可以安裝多少輛電動(dòng)汽車?
(2)如果工廠招聘名新工人,使得招聘的新工人和抽調(diào)的熟練工剛好能完成一年的安裝任務(wù),那么工廠有哪幾種新工人的招聘方案?
【答案】(1) 每名熟練工每月可以安裝輛電動(dòng)車,新工人每月分別安裝輛電動(dòng)汽車;(2) ①調(diào)熟練工人,新工人人;②調(diào)熟練工人,新工人人;③調(diào)熟練工人,新工人人;④調(diào)熟練工人,新工人人.
【解析】(1)設(shè)每名熟練工每月可以安裝輛電動(dòng)車,新工人每月分別安裝輛電動(dòng)汽車,
根據(jù)題意得,解之得.
答:每名熟練工每月可以安裝輛電動(dòng)車,新工人每月分別安裝輛電動(dòng)汽車;
(2)設(shè)調(diào)熟練工人,
由題意得,,
整理得,,
,
當(dāng),,,時(shí),,,,,
即:①調(diào)熟練工人,新工人人;②調(diào)熟練工人,新工人人;
③調(diào)熟練工人,新工人人;④調(diào)熟練工人,新工人人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】東方專賣店專銷某種品牌的鋼筆,進(jìn)價(jià)12元/支,售價(jià)20元/支.為了促銷,專賣店決定凡是買10支以上的,每多買一支,售價(jià)就降低0.10元(例如,某人買20支鋼筆,于是每只降價(jià)0.10×(20﹣10)=1元,就可以按19元/支的價(jià)格購買),但是最低價(jià)為16元/支.
(1)求顧客一次至少買多少支,才能以最低價(jià)購買?
(2)寫出當(dāng)一次購買x支時(shí)(x>10),利潤y(元)與購買量x(支)之間的函數(shù)關(guān)系式;
(3)有一天,一位顧客買了46支,另一位顧客買了50支,專實(shí)店發(fā)現(xiàn)賣了50支反而比賣46支賺的錢少,為了使每次賣的多賺錢也多,在其他促銷條件不變的情況下,最低價(jià)16元/支至少要提高到多少,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防“甲型H1N1”,某校對(duì)教室采用藥薰消毒法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(mg)與時(shí)間x(min)成正比例,藥物燃燒后,y與x成反比例,如圖所示,現(xiàn)測(cè)得藥物8min燃畢,此時(shí)室內(nèi)空氣每立方米的含藥量為6mg,請(qǐng)你根據(jù)題中提供的信息,解答下列問題:
(1)藥物燃燒時(shí),求y關(guān)于x的函數(shù)關(guān)系式?自變量x的取值范圍是什么?藥物燃燒后y與x的函數(shù)關(guān)系式呢?
(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6mg時(shí),生方可進(jìn)教室,那么從消毒開始,至少需要幾分鐘后,生才能進(jìn)入教室?
(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3mg且持續(xù)時(shí)間不低于10min時(shí),才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一節(jié)數(shù)學(xué)實(shí)踐活動(dòng)課上,老師拿出三個(gè)邊長都為5cm 的正方形硬紙板,他向同學(xué)們提出了這樣一個(gè)問題:若將三個(gè)正方形紙板不重疊地放在桌面上,用一個(gè)圓形硬紙板將其蓋住,這樣的圓形硬紙板的最小直徑應(yīng)有多大?問題提出后,同學(xué)們經(jīng)過討論,大家覺得本題實(shí)際上就是求將三個(gè)正方形硬紙板無重疊地適當(dāng)放置,圓形硬紙板能蓋住時(shí)的最小直徑.老師將同學(xué)們討論過程中探索出的三種不同擺放類型的圖形畫在黑板上,如圖所示:
(1)通過計(jì)算(結(jié)果保留根號(hào)與π).
(Ⅰ)圖①能蓋住三個(gè)正方形所需的圓形硬紙板最小直徑應(yīng)為
(Ⅱ)圖②能蓋住三個(gè)正方形所需的圓形硬紙板最小直徑為
(Ⅲ)圖③能蓋住三個(gè)正方形所需的圓形硬紙板最小直徑為
(2)其實(shí)上面三種放置方法所需的圓形硬紙板的直徑都不是最小的,請(qǐng)你畫出用圓形硬紙板蓋住三個(gè)正方形時(shí)直徑最小的放置方法,(只要畫出示意圖,不要求說明理由),并求出此時(shí)圓形硬紙板的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店老板到廠家購甲、乙兩種品牌的服裝,若購甲種品牌服裝10件,乙種品牌服裝9件,需要1800元;若購進(jìn)甲種品牌服裝8件,乙種品牌服裝18件,需要2520元.
(1)求甲、乙兩種品牌的服裝每件分別為多少元?
(2)若銷售一件甲種品牌服裝可獲利18元,銷售一件乙種品牌服裝可獲利30元,根據(jù)市場(chǎng)需要,服裝店老板決定:購進(jìn)甲種品牌服裝的數(shù)量要比購進(jìn)乙種品牌服裝的數(shù)量的2倍還多4件,且甲種品牌服裝最多可購進(jìn)28件,這樣服裝全部售出后可使總的獲利不少于732元,問有幾種進(jìn)貨方案?并寫出進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,AB∥CD,求∠A+∠AEC+∠C的度數(shù).
解:過點(diǎn)E作EF∥AB.
∵EF∥AB(已作)
∴∠A+∠AEF=180°(______)
又∵AB∥CD(已知)
∴EF∥CD(______)
∴∠CEF+∠______=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
∴∠A+∠AEF+∠CEF+∠C=360°(等式性質(zhì))
即∠A+∠AEC+∠C=______.
(2)根據(jù)上述解題及作輔助線的方法,在圖2中,AB∥EF,則∠B+∠C+∠D+∠E=______.
(3)根據(jù)(1)和(2)的規(guī)律,圖3中AB∥GF,猜想:∠B+∠C+∠D+∠E+∠F=______.
(4)如圖4,AB∥CD,在B,D兩點(diǎn)的同一側(cè)有M1,M2,M3,…Mn共n個(gè)折點(diǎn),則∠B+∠M1+∠M2+…+∠Mn+∠D的度數(shù)為______(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】火車勻速通過隧道時(shí),火車在隧道內(nèi)的長度(米)與火車行駛時(shí)間(秒)之間的關(guān)系用圖象描述如圖所示,有下列結(jié)論:
①火車的長度為120米;
②火車的速度為30米/秒;
③火車整體都在隧道內(nèi)的時(shí)間為25秒;
④隧道長度為750米.
其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為Rt△ABC斜邊AB上的一點(diǎn),以OA為半徑的⊙O與BC相切于點(diǎn)D,與AC交于點(diǎn)E,連接AD.
(1)求證:AD平分∠BAC;
(2)若∠BAC = 60°,OA = 2,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com