【題目】如圖,點(diǎn)E是正方形ABCD的對角線BD上一點(diǎn),并且AD=DE,過點(diǎn)E作EF⊥BD交AB于點(diǎn)F.
(1)求證:AF=BE,(2)若正方形的邊長為1,求BF的長度.
【答案】(1)見解析;(2)2-.
【解析】
(1)先證Rt△AFD≌Rt△EFD,則EF=AF,再由正方形的性質(zhì)得出∠EBF=45°,可得△BFE是等腰直角三角形,則BE=EF,即可得出結(jié)論;
(2)根據(jù)勾股定理求出BD=,由AD=DE可得BE= -1,由AF=BE,AB=1即可得BF的長度.
證明:(1)如圖,連接DF,
∵正方形ABCD,
∴AB=DC=BC=AD
∴∠A=∠ ABC=∠ C=∠ ADC=90°
∵EF⊥BD
∴∠DEF=∠ BEF=90°
∴∠A=∠ DEF
在Rt△AFD與Rt△EFD中
∵AD=ED,DF=DF
∴Rt△AFD≌Rt△EFD(HL)
∴EF=AF
∵四邊形ABCD是正方形
∴∠EBF=45°
∴∠BFE=90°-∠EBF=45°
∴∠EBF=∠ EFB
∴BE=EF
∴AF=BE.
(2)由(1)知,AF=EF=BE,AB=DC=BC=AD=1,
∴BD= = ,
∵AD=DE
∴BE=BD-DE=-1,
∴AF=BE=-1,
∴BF=AB-AF=1-(-1)=2-.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】體育課上,老師為了解女學(xué)生定點(diǎn)投籃的情況,隨機(jī)抽取8名女生進(jìn)行每人4次定點(diǎn)投籃的測試,進(jìn)球數(shù)的統(tǒng)計如圖所示.
(1)求女生進(jìn)球數(shù)的平均數(shù)、中位數(shù);
(2)投球4次,進(jìn)球3個以上(含3個)為優(yōu)秀,全校有女生1200人,估計為“優(yōu)秀”等級的女生約為多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)從A,B向甲、乙兩地運(yùn)送蔬菜,A,B兩個蔬菜市場各有蔬菜14噸,其中甲地需要蔬菜15噸,乙地需要蔬菜13噸,從A到甲地運(yùn)費(fèi)50元/噸,到乙地30元/噸;從B地到甲運(yùn)費(fèi)60元/噸,到乙地45元/噸.
(1)設(shè)A地到甲地運(yùn)送蔬菜x噸,請完成下表:
運(yùn)往甲地(單位:噸) | 運(yùn)往乙地(單位:噸) | |
A | x | |
B |
(2)設(shè)總運(yùn)費(fèi)為W元,請寫出W與x的函數(shù)關(guān)系式
(3)怎樣調(diào)運(yùn)蔬菜才能使運(yùn)費(fèi)最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為直線上一點(diǎn),以為頂點(diǎn)作,射線平分
(1)如圖①,與的數(shù)量關(guān)系為______
(2)如圖①,如果,請你求出的度數(shù)并說明理由;
(3)若將圖①中的繞點(diǎn)旋轉(zhuǎn)至圖②的位置,依然平分,若,請直接寫出的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某港口位于東西方向的海岸線上.“遠(yuǎn)航”號、“海天”號輪船同時離開港口,各自沿一固定方向航行,“遠(yuǎn)航”號每小時航行16海里,“海天”號每小時航行12海里.它們離開港口 小時后相距30海里.如果知道“遠(yuǎn)航”號沿東北方向航行,能知道“海天”號沿哪個方向航行嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,得到某種運(yùn)動服每月的銷量與售價的相關(guān)信息如下表:
售價(元/件) | 100 | 110 | 120 | 130 | …… |
月銷量(件) | 200 | 180 | 160 | 140 | …… |
(1)已知該運(yùn)動服的進(jìn)價為每件60元,設(shè)售價為x元;
請用含有x的式子表示:
①銷售該運(yùn)動服每件的利潤是 元;
②月銷售量是 件;(直接寫結(jié)果)
(2)設(shè)銷售該運(yùn)動服的月利潤為y元,那么售價為多少元時,當(dāng)月的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形紙片ABCD,點(diǎn)E,F分別在邊AB,CD上,連接EF,將∠BEF對折,點(diǎn)B落在直線EF上的點(diǎn)B'處,得折痕EM;將∠AEF對折,點(diǎn)A落在直線EF上的點(diǎn)A'處,得折痕EN,若∠DNA'的度數(shù)為α,請用含α的式子表示∠BME的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖a是長方形紙帶,∠DEF=24°,將紙帶沿EF折疊成圖b,再沿BF折疊成圖c,則圖 c中的∠CFE的度數(shù)是( )
A.104°B.106°C.108°D.110°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com