【題目】如圖,圖中二次函數(shù)解析式為y=ax2+bx+c(a≠0)則下列命題中正確的有(填序號)
①abc>0;②b2<4ac;③4a﹣2b+c>0;④2a+b>c.

【答案】①③④
【解析】解:①∵拋物線開口向上,拋物線的對稱軸在y軸右側(cè),拋物線與y軸交于y軸負(fù)半軸,

∴a>0,﹣ >0,c<0,

∴b<0,abc>0,①正確;

②∵拋物線與x軸有兩個不同交點,

∴△=b2﹣4ac>0,b2>4ac,②錯誤;

③當(dāng)x=﹣2時,y=4a﹣2b+c>0,③正確;

④∵0<﹣ <1,

∴﹣2a<b<0,

∴2a+b>0>c,④正確.

所以答案是:①③④.

【考點精析】認(rèn)真審題,首先需要了解二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系(二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標(biāo):(0,c)),還要掌握命題與定理(我們把題設(shè)、結(jié)論正好相反的兩個命題叫做互逆命題.如果把其中一個叫做原命題,那么另一個叫做它的逆命題;經(jīng)過證明被確認(rèn)正確的命題叫做定理)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形AOCB的頂點A、C分別位于x軸和y軸的正半軸上,線段OA、OC的長度滿足方程|x﹣15|+ =0(OA>OC),直線y=kx+b分別與x軸、y軸交于M、N兩點,將△BCN沿直線BN折疊,點C恰好落在直線MN上的點D處,且tan∠CBD=

(1)求點B的坐標(biāo);
(2)求直線BN的解析式;
(3)將直線BN以每秒1個單位長度的速度沿y軸向下平移,求直線BN掃過矩形AOCB的面積S關(guān)于運動的時間t(0<t≤13)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=﹣ +bx+c與y軸交于點C,與x軸的兩個交點分別為A(﹣4,0),B(1,0).

(1)求拋物線的解析式;
(2)已知點P在拋物線上,連接PC,PB,若△PBC是以BC為直角邊的直角三角形,求點P的坐標(biāo);
(3)已知點E在x軸上,點F在拋物線上,是否存在以A,C,E,F(xiàn)為頂點的四邊形是平行四邊形?若存在,請直接寫出點E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,點D、E分別在ABAC上,且CEBC,連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)90°后得到CF,連接EF

1)求證:△BDC≌△EFC;

2)若EFCD,求證:∠BDC90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ACBC2,∠C90°,將一塊等腰三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CBD、E兩點.如圖①、②、③是旋轉(zhuǎn)三角板得到的圖形中的3種情況,研究:

1)三角板繞點P旋轉(zhuǎn),觀察線段PDPE之間有什么數(shù)量關(guān)系?并結(jié)合圖②說明理由.

2)三角板繞點P旋轉(zhuǎn),△PCE是否能成為等腰三角形?若能,指出所有情況(即寫出△PCE為等腰三角形時BE的長);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,E是直線AB,CD內(nèi)部一點,ABCD,連接EA,ED

(1)探究猜想:

①若∠A=20°,∠D=40°,則∠AED= °

②猜想圖①中∠AED,∠EAB,∠EDC的關(guān)系,并用兩種不同的方法證明你的結(jié)論.

(2)拓展應(yīng)用:

如圖②,射線FEl1l2交于分別交于點E、FABCD,ab,c,d分別是被射線FE隔開的4個區(qū)域(不含邊界,其中區(qū)域a,b位于直線AB上方,P是位于以上四個區(qū)域上的點,猜想:∠PEB,∠PFC,∠EPF的關(guān)系(任寫出兩種,可直接寫答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式x2-4y2-2x+4y,細(xì)心觀察這個式子就會發(fā)現(xiàn)前兩項符合平方差公式,后兩項可提取公因式,前后兩部分分別分解因式后會產(chǎn)生公因式,然后提取公因式就可以完成整個式子的分解因式,過程為x2-4y2-2x+4y=(x+2y)(x-2y)-2(x-2y)=(x-2y)(x+2y-2).這種分解因式的方法叫分組分解法利用這種方法解決下列問題

(1)分解因式a2-4ab2+4;

(2)ABC三邊ab、c滿足a2abacbc=0,試判斷ABC的形狀

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,現(xiàn)有一個長方體水槽放在桌面上,從水槽內(nèi)量得它的側(cè)面高20cm,底面的長25cm,寬20cm,水槽內(nèi)水的高度為acm,往水槽里放入棱長為10cm的立方體鐵塊.

1)求下列兩種情況下a的值.

①若放入鐵塊后水面恰好在鐵塊的上表面;

②若放入鐵塊后水槽恰好盛滿(無溢出).

2)若0a≤18,求放入鐵塊后水槽內(nèi)水面的高度(用含a的代數(shù)式表示).

3)如圖2,在水槽旁用管子連通一個底面在桌面上的圓柱形容器,內(nèi)部底面積為50cm2,管口底部A離水槽內(nèi)底面的高度為hcmha),水槽內(nèi)放入鐵塊,水溢入圓柱形容器后,容器內(nèi)水面與水槽內(nèi)水面的高度差為8.2cm,若a=15,求h的值.(水槽和容器的壁及底面厚度相同)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知整數(shù)a0,a1a2,a3,a4,滿足下列條件:a00a1=﹣|a0+1|,a2=﹣|a1+2|,a3=﹣|a2+3|,,以此類推,a2019的值是( )

A. 1009B. 1010C. 2018D. 2020

查看答案和解析>>

同步練習(xí)冊答案