【題目】小明為今年將要參加中考的好友小李制作了一個(如圖)正方體禮品盒,六面上各有一字,連起來就是預(yù)祝中考成功,其中預(yù)的對面是,的對面是,則它的平面展開圖可能是(

A.B.C.D.

【答案】C

【解析】

正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據(jù)這一特點(diǎn)對各選項(xiàng)分析判斷后利用排除法求解:

正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據(jù)這一特點(diǎn)對各選項(xiàng)分析判斷后利用排除法求解:

A、預(yù)的對面是,的對面是,的對面是,故本選項(xiàng)錯誤;

B、預(yù)的對面是,的對面是的對面是,故本選項(xiàng)錯誤;

C、預(yù)的對面是,的對面是,的對面是,故本選項(xiàng)正確;

D預(yù)的對面是,的對面是,的對面是,故本選項(xiàng)錯誤.

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為6的正方形ABCD中,E是邊CD的中點(diǎn),將△ADE沿AE對折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG.

(1)求證:△ABG≌△AFG;(2)求BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩大型超市為了吸引顧客,都舉行有獎酬賓活動,凡購物滿200元,均可得到一次抽獎的機(jī)會,在一個紙盒里裝有2個紅球和2個白球,除顏色外其它都相同,抽獎?wù)咭淮螐闹忻鰞蓚球,根據(jù)球的顏色決定送禮金券(在他們超市使用時,與人民幣等值)的多少(如下表).

甲超市.


兩 紅

一紅一白

兩 白

禮金券(元)

20

50

20

乙超市:


兩 紅

一紅一白

兩 白

禮金券(元)

50

20

50

1】(1)用樹狀圖表示得到一次摸獎機(jī)會時中禮金券的所有情況;

2】(2)如果只考慮中獎因素,你將會選擇去哪個超市購物?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九年級(1)班開展了為期一周的“敬老愛親”社會活動,并根據(jù)學(xué)生做家務(wù)的時間來評價他們在活動中的表現(xiàn).老師調(diào)查了全班50名學(xué)生在這次活動中做家務(wù)的時間,并將統(tǒng)計(jì)的時間(單位:小時)分成5組:A:0.5≤x<1,B:1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成兩幅不完整的統(tǒng)計(jì)圖(如圖).

請根據(jù)圖中提供的信息,解答下列問題:

(1)這次活動中學(xué)生做家務(wù)時間的中位數(shù)所在的組是____________;

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)該班的小明同學(xué)這一周做家務(wù)2小時,他認(rèn)為自己做家務(wù)的時間比班里一半以上的同學(xué)多,你認(rèn)為小明的判斷符合實(shí)際嗎?請用適當(dāng)?shù)慕y(tǒng)計(jì)知識說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將下列各數(shù)填在相應(yīng)的集合里。

-3.8, -20%, 4.3, -∣-∣, , 0, -(-),

整數(shù)集合:{ … };

分?jǐn)?shù)集合:{ … };

正數(shù)集合:{ … };

負(fù)數(shù)集合:{ … }.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC 的外接圓,AB=AC,BD是⊙O的直徑,PA∥BC,與DB的延長線交于點(diǎn)P,連接AD.

(1)求證:PA是⊙O的切線;

(2)若AB=,BC=4,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】原來公園有一個半徑為 1 m 的苗圃,現(xiàn)在準(zhǔn)備擴(kuò)大面積,設(shè)當(dāng)擴(kuò)大后的半徑為x m,則增加的環(huán)形的面積為y m 2 .

(1)寫出yx的函數(shù)關(guān)系式;

(2)當(dāng)半徑增大到多少時面積增大1倍;

(3)試猜測半徑是多少時,面積是原來的3、4、5、….

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程kx2+2x﹣1=0有實(shí)數(shù)根,

(1)求k的取值范圍;

(2)當(dāng)k=2時,請用配方法解此方程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣5x軸交于A(﹣1,0),B(5,0)兩點(diǎn),與y軸交于點(diǎn)C.

(1)求拋物線的函數(shù)表達(dá)式;

(2)如圖2,CE∥x軸與拋物線相交于點(diǎn)E,點(diǎn)H是直線CE下方拋物線上的動點(diǎn),過點(diǎn)H且與y軸平行的直線與BC,CE分別相交于點(diǎn)F,G,試探究當(dāng)點(diǎn)H運(yùn)動到何處時,四邊形CHEF的面積最大,求點(diǎn)H的坐標(biāo);

(3)若點(diǎn)K為拋物線的頂點(diǎn),點(diǎn)M(4,m)是該拋物線上的一點(diǎn),在x軸,y軸上分別找點(diǎn)P,Q,使四邊形PQKM的周長最小,求出點(diǎn)P,Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案