【題目】在正方形ABCD中,AC是對(duì)角線,今有較大的直角三角板,一邊始終經(jīng)過點(diǎn)B,直角頂點(diǎn)P在射線AC上移動(dòng),另一邊交DC于點(diǎn)Q.
(1)如圖①,當(dāng)點(diǎn)Q在DC邊上時(shí),猜想并寫出PB與PQ所滿足的數(shù)量關(guān)系,并加以證明;
(2)如圖②,當(dāng)點(diǎn)Q落在DC的延長(zhǎng)線上時(shí),猜想并寫出PB與PQ滿足的數(shù)量關(guān)系,并證明你的猜想.
【答案】(1)PB=PQ.證明見解析;(2)PB=PQ.證明見解析.
【解析】試題分析:(1)過P作PE⊥BC,PF⊥CD,證明Rt△PQF≌Rt△PBE,即可;
(2)證明思路同(1).
試題解析:(1)PB=PQ,
證明:過P作PE⊥BC,PF⊥CD,
∵P,C為正方形對(duì)角線AC上的點(diǎn),
∴PC平分∠DCB,∠DCB=90°,
∴PF=PE,
∴四邊形PECF為正方形,
∵∠BPE+∠QPE=90°,∠QPE+∠QPF=90°,
∴∠BPE=∠QPF,
∴Rt△PQF≌Rt△PBE,
∴PB=PQ;
(2)PB=PQ,
證明:過P作PE⊥BC,PF⊥CD,
∵P,C為正方形對(duì)角線AC上的點(diǎn),
∴PC平分∠DCB,∠DCB=90°,
∴PF=PE,
∴四邊形PECF為正方形,
∵∠BPF+∠QPF=90°,∠BPF+∠BPE=90°,
∴∠BPE=∠QPF,
∴Rt△PQF≌Rt△PBE,
∴PB=PQ.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于豎直上拋的物體,在沒有空氣阻力的條件下,有如下關(guān)系式:h=v0t-gt2(其中h是上升的高度,v0是初速度,g是重力加速度,t是拋出后所經(jīng)過的時(shí)間).如果將物體以每秒30米的初速度向上拋,物體___________秒處于離拋出點(diǎn)40米的地方(其中g=10米/秒2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C,E,F(xiàn),B在同一直線上,點(diǎn)A,D在BC異側(cè),AB∥CD,AE=DF,∠A=∠D.
(1)求證:AB=CD;
(2)若AB=CF,∠B=30°,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,的頂點(diǎn)均在格點(diǎn)上.
(1)請(qǐng)建立合適的平面直角坐標(biāo)系,使點(diǎn),的坐標(biāo)分別為和,并寫出點(diǎn)的坐標(biāo)為___________;
(2)在(1)的條件下.①中任意一點(diǎn)經(jīng)平移后對(duì)應(yīng)點(diǎn),將作同樣的平移得到,請(qǐng)畫出,并直接寫出點(diǎn)的坐標(biāo);
②點(diǎn)在軸上,且,則點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在⊙O 中,P是⊙O內(nèi)一點(diǎn),過點(diǎn)P最短和最長(zhǎng)的弦分別為6和10,則經(jīng)過點(diǎn)P且長(zhǎng)度為整數(shù)的的弦共有( )條。
A.5
B.8
C.10
D.無數(shù)條
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,這是某市部分簡(jiǎn)圖,為了確定各建筑物的位置:
(1)請(qǐng)你以火車站為原點(diǎn)建立平面直角坐標(biāo)系,若以小方格的邊長(zhǎng)為單位長(zhǎng)度,寫出市場(chǎng)的坐標(biāo)為_______;超市的坐標(biāo)為_____________.
(2)請(qǐng)將體育場(chǎng)為A、賓館為C和火車站為B看作三點(diǎn)用線段連起來,得△ABC,然后將△ABC向下平移4個(gè)單位長(zhǎng)度,畫出平移后的,寫出的坐標(biāo).
(3)求出的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面坐標(biāo)系中,正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2),延長(zhǎng)CB交x軸于點(diǎn)A1 , 作正方形A1B1C1C,延長(zhǎng)C1B1交x軸于點(diǎn)A2 , 作正方形A2B2C2C1,………按這樣的規(guī)律進(jìn)行下去,第2012個(gè)正方形的面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角三角形ABC中,∠ACB=90°,∠A=33°,將三角形ABC沿AB方向向右平移得到三角形DEF.
(1)試求出∠E的度數(shù);
(2)若AE=9 cm,DB=2 cm,求出BE的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,E,F(xiàn),C在一條直線上,AE=CF,過E,F(xiàn)分別作DE⊥AC,BF⊥AC,若AB=CD,試證明BD平分EF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com