分析 先將底座部分的側(cè)面展開,然后根據(jù)兩點之間線段最短找出最短路徑,最后由BB′∥CC′∥DD′列出比例求解即可.
解答 解:將四棱錐的側(cè)面展開,連接AD′.
∵塔底座部分是四棱柱,
∴BB′∥CC′∥DD′.
∴$\frac{AB}{AD}=\frac{BM}{DD′}$=$\frac{1}{3}$,$\frac{AC}{AD}=\frac{CN}{DD′}=\frac{2}{3}$.
∴BM=$\frac{1}{3}D′D=\frac{1}{3}BB′$,CN=$\frac{2}{3}DD′=\frac{2}{3}CC′$.
點評 本題主要考查的是平面展開路徑最短問題,將底座部分的側(cè)面展開,AD′之間的最短路徑是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{\sqrt{5}}{10}$ | C. | $\frac{2\sqrt{5}}{5}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | x2-(x-y+2z)=x2-x+y+2z | B. | x-(-2x+3y-1)=x+2x+3y+1 | ||
C. | 3x+2(x-2y+1)=3x-2x-2y-2 | D. | -(x-2)-2(x2+2)=-x+2-2x2-4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 有兩邊及一角對應(yīng)相等的兩三角形全等 | |
B. | 若a2=b2 則有a=b | |
C. | 方程x2-x+1=0有兩個不等實根 | |
D. | 圓的切線垂直于過切點的半徑 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com