【題目】已知拋物線yx24x軸交于A(-2,0)、B(2,0)兩點(diǎn),點(diǎn)P為拋物線上一點(diǎn),且SPAB4.

1)在直角坐標(biāo)系中畫出圖形;

2)寫出拋物線的對(duì)稱軸和頂點(diǎn)坐標(biāo);

3)求P點(diǎn)的坐標(biāo).

【答案】1)見解析(2)對(duì)稱軸為x=0,頂點(diǎn)坐標(biāo)為(0,-4);(3P點(diǎn)坐標(biāo)為(,2),(-2),(,-2),(-,-2),

【解析】

1)根據(jù)拋物線的解析式即可作圖;

2)根據(jù)二次函數(shù)的解析式與圖像即可得到對(duì)稱軸和頂點(diǎn)坐標(biāo);

3)根據(jù)AB=4,SPAB4,得到三角形的高為2,故令y=±2,即可求出P點(diǎn)坐標(biāo).

1)拋物線yx24的圖像如下:

2)拋物線的對(duì)稱軸為x=0,頂點(diǎn)坐標(biāo)為(0,-4);

3)∵AB=4,SPAB4,得到三角形的高為2,

y=±2,即x24=2,或x24=-2

解得x1=x2=-,x3=x4=-,

P點(diǎn)坐標(biāo)為(,2),(-,2),(-2),(-,-2),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某海盜船以20海里/小時(shí)的速度在某海域執(zhí)行巡航任務(wù),當(dāng)海監(jiān)船由西向東航行至A處使,測(cè)得島嶼P恰好在其正北方向,繼續(xù)向東航行1小時(shí)到達(dá)B處,測(cè)得島嶼P在其北偏西30°方向,保持航向不變又航行2小時(shí)到達(dá)C處,求出此時(shí)海監(jiān)船與島嶼P之間的距離(即PC的長(zhǎng),結(jié)果精確到0.1)(參考數(shù)據(jù):≈1.732,≈1.414

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè),點(diǎn)B的坐標(biāo)為(1,0),C(0,-3)

(1) 求拋物線的解析式;

(2) 若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值.

(3) 若點(diǎn)Ex軸上,點(diǎn)P在拋物線上,是否存在以A、C、EP為頂點(diǎn)且以AC為一邊的平行四邊形?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角三角形中,,,在邊上取一點(diǎn),使得,點(diǎn)、分別是線段、的中點(diǎn),連接,作,交于點(diǎn),如圖1所示.

1)請(qǐng)判斷四邊形是什么特殊的四邊形,并證明你的結(jié)論;

2)將繞點(diǎn)順時(shí)針旋轉(zhuǎn)到,交線段于點(diǎn),交于點(diǎn),如圖2所示,請(qǐng)證明:;

3)在第(2)條件下,若點(diǎn)中點(diǎn),且,如圖3,求的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某無人機(jī)于空中處探測(cè)到目標(biāo)的俯角分別是,此時(shí)無人機(jī)的飛行高度,隨后無人機(jī)從處繼續(xù)水平飛行m到達(dá)處.

1之間的距離

2求從無人機(jī)上看目標(biāo)的俯角的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(m+3)xm+1=0.

(1)求證:無論m取何值,原方程總有兩個(gè)不相等的實(shí)數(shù)根;

(2)x1x2是原方程的兩根,且|x1x2|=2,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,∠ADC的平分線與AB交于E,點(diǎn)FDE的延長(zhǎng)線上,∠BFE=90°,連接AF、CF,CFAB交于G.有以下結(jié)論:

①AE=BC

②AF=CF

③BF2=FGFC

④EGAE=BGAB

其中正確的個(gè)數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC+ADC180°,ABADAEBC于點(diǎn)E,若AE17BC8,CD6,則四邊形ABCD的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)EDBCDB上,點(diǎn)ADBC內(nèi)部,∠DAE=∠BAC90°ADAE,ABAC.給出下列結(jié)論,其中正確的是_____(填序號(hào))①BDCE②∠DCB﹣∠ABD45°CEBEADBE2+CD22AD2+AB2

查看答案和解析>>

同步練習(xí)冊(cè)答案