(2013•威海)如圖,在△ABC中,∠ACB=90°,BC的垂直平分線EF交BC于點D,交AB于點E,且BE=BF,添加一個條件,仍不能證明四邊形BECF為正方形的是( 。
分析:根據(jù)中垂線的性質:中垂線上的點到線段兩個端點的距離相等,有BE=EC,BF=FC進而得出四邊形BECF是菱形;由菱形的性質知,以及菱形與正方形的關系,進而分別分析得出即可.
解答:解:∵EF垂直平分BC,
∴BE=EC,BF=CF,
∵BF=BE,
∴BE=EC=CF=BF,
∴四邊形BECF是菱形;
當BC=AC時,
∵∠ACB=90°,
則∠A=45°時,菱形BECF是正方形.
∵∠A=45°,∠ACB=90°,
∴∠EBC=45°
∴∠EBF=2∠EBC=2×45°=90°
∴菱形BECF是正方形.
故選項A正確,但不符合題意;
當CF⊥BF時,利用正方形的判定得出,菱形BECF是正方形,故選項B正確,但不符合題意;
當BD=DF時,利用正方形的判定得出,菱形BECF是正方形,故選項C正確,但不符合題意;
當AC=BF時,無法得出菱形BECF是正方形,故選項D錯誤,符合題意.
故選:D.
點評:本題考查了菱形的判定和性質及中垂線的性質、直角三角形的性質、正方形的判定等知識,熟練掌握正方形的相關的定理是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•威海)如圖,在△ABC中,∠A=36°,AB=AC,AB的垂直平分線OD交AB于點O,交AC于點D,連接BD,下列結論錯誤的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•威海)如圖是由6個同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•威海)如圖,AC⊥CD,垂足為點C,BD⊥CD,垂足為點D,AB與CD交于點O.若AC=1,BD=2,CD=4,則AB=
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•威海)如圖,在平面直角坐標系中,直線y=
1
2
x+
3
2
與直線y=x交于點A,點B在直線y=
1
2
x+
3
2
上,∠BOA=90°.拋物線y=ax2+bx+c過點A,O,B,頂點為點E.
(1)求點A,B的坐標;
(2)求拋物線的函數(shù)表達式及頂點E的坐標;
(3)設直線y=x與拋物線的對稱軸交于點C,直線BC交拋物線于點D,過點E作FE∥x軸,交直線AB于點F,連接OD,CF,CF交x軸于點M.試判斷OD與CF是否平行,并說明理由.

查看答案和解析>>

同步練習冊答案