如圖,A、B兩點被池塘隔開,為測量A、B兩點的距離,某數(shù)學(xué)興趣學(xué)習(xí)小組根據(jù)所學(xué)知識設(shè)計了如下系列測量方案:
方案一:如圖a,在AB外選一點C,連接AC和BC,并分別找出AC和BC的中點M、N,如果測得MN=20m,那么AB=2×20m=40m.

方案二:如圖b,分別延長AC、BC,使CD=AC,CE=BC,連接DE,如果測得DE=Xm,則AB=Xm.
請解答下列問題:
(1)某同學(xué)看了測量方案后知道方案二應(yīng)用的是“三角形全等”設(shè)計的,設(shè)計方案可行.請寫出方案一應(yīng)用的數(shù)學(xué)知識方法并評價其可行性.
(2)請用上面類似的方法,在圖c中畫出圖形,敘述你的新測量方案方案三,并寫出你所應(yīng)用的數(shù)學(xué)知識方法.
【答案】分析:(1)根據(jù)題意可得本方案運用了三角形的中位線定理;
(2)類比這以上兩個方案應(yīng)用梯形的中位線定理或者相似三角形的性質(zhì)求得AB的長,寫出可行方案即可.
解答:解:(1)方案一應(yīng)用的是“三角形中位線性質(zhì)”設(shè)計的,設(shè)計方案可行.…3分

(2)方案三:可以應(yīng)用“梯形中位線性質(zhì)”或者“相似三角形性質(zhì)”設(shè)計.…8分
(上述方法和過程僅供參考,其他方法和過程參照給分)
點評:本題考查了相似三角形的應(yīng)用、全等三角形的應(yīng)用、及中位線定理的知識,考查了同學(xué)們應(yīng)用知識的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,A、B兩點被池塘隔開,在AB外任選一點C,連接AC、BC分別取其三等分點M、N量得MN=28m.則AB的長為
 
m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,A、B兩點被池塘隔開,為測量A、B兩點的距離,某數(shù)學(xué)興趣學(xué)習(xí)小組根據(jù)所學(xué)知識設(shè)計了如下系列測量方案:
方案一:如圖a,在AB外選一點C,連接AC和BC,并分別找出AC和BC的中點M、N,如果測得MN=20m,那么AB=2×20m=40m.

方案二:如圖b,分別延長AC、BC,使CD=AC,CE=BC,連接DE,如果測得DE=Xm,則AB=Xm.
請解答下列問題:
(1)某同學(xué)看了測量方案后知道方案二應(yīng)用的是“三角形全等”設(shè)計的,設(shè)計方案可行.請寫出方案一應(yīng)用的數(shù)學(xué)知識方法并評價其可行性.
(2)請用上面類似的方法,在圖c中畫出圖形,敘述你的新測量方案方案三,并寫出你所應(yīng)用的數(shù)學(xué)知識方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,A、B兩點被池塘隔開,在AB外取一點C,連接AC、BC,在AC上取點M,使AM=3MC,作MN∥AB交BC于N,量得MN=38m,則AB的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,A,B兩點被池塘隔開,在AB外任選一點C,連接AC,BC,分別取其三等分點M,N,量得MN=30m,若CN<NB,CM<MA,則AB的長是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,A,B兩點被池塘隔開,在A,B外選一點C,連接AC和BC,并分別找出AC和BC的中點M,N,如果測得MN=20m,那么A,B兩點間的距離是多少?( 。

查看答案和解析>>

同步練習(xí)冊答案