如圖①所示,已知A、B為直線(xiàn)l上兩點(diǎn),點(diǎn)C為直線(xiàn)l上方一動(dòng)點(diǎn),連接AC、BC,分別以AC、BC為邊向△ABC外作正方形CADF和正方形CBEG,過(guò)點(diǎn)D作DD1⊥l于點(diǎn)D1,過(guò)點(diǎn)E作EE1⊥l于點(diǎn)E1

(1)如圖②,當(dāng)點(diǎn)E恰好在直線(xiàn)l上時(shí)(此時(shí)E1與E重合),試說(shuō)明DD1=AB;

(2)在圖①中,當(dāng)D、E兩點(diǎn)都在直線(xiàn)l的上方時(shí),試探求三條線(xiàn)段DD1、EE1、AB之間的數(shù)量關(guān)系,并說(shuō)明理由;

(3)如圖③,當(dāng)點(diǎn)E在直線(xiàn)l的下方時(shí),請(qǐng)直接寫(xiě)出三條線(xiàn)段DD1、EE1、AB之間的數(shù)量關(guān)系.(不需要證明)

 

【答案】

(1)證明:∵四邊形CADF、CBEG是正方形,

∴AD=CA,∠DAC=∠ABC=90°,

∴∠DAD1+∠CAB=90°,

∵DD1⊥AB,

∴∠DD1A=∠ABC=90°,

∴∠DAD1+∠ADD1=90°,

∴∠ADD1=∠CAB,

在△ADD1和△CAB中,∠DD1A=∠ABC  ∠ADD1=∠CAB  AD=CA,

∴△ADD1≌△CAB(AAS),

∴DD1=AB;

(2)解:AB=DD1+EE1

證明:過(guò)點(diǎn)C作CH⊥AB于H,

∵DD1⊥AB,

∴∠DD1A=∠CHA=90°,

∴∠DAD1+∠ADD1=90°,

∵四邊形CADF是正方形,

∴AD=CA,∠DAC=90°,

∴∠DAD1+∠CAH=90°,

∴∠ADD1=∠CAH,

在△ADD1和△CAH中,∠DD1A=∠CHA ∠ADD1=∠CAH  AD=CA,

∴△ADD1≌△CAH(AAS),

∴DD1=AH;

同理:EE1=BH,

∴AB=AH+BH=DD1+EE1;

(3)AB=DD1-EE1

證明:過(guò)點(diǎn)C作CH⊥AB于H,

∵DD1⊥AB,

∴∠DD1A=∠CHA=90°,

∴∠DAD1+∠ADD1=90°,

∵四邊形CADF是正方形,

∴AD=CA,∠DAC=90°,

∴∠DAD1+∠CAH=90°,

∴∠ADD1=∠CAH,

在△ADD1和△CAH中,∠DD1A=∠CHA  ∠ADD1=∠CAH  AD=CA,

∴△ADD1≌△CAH(AAS),

∴DD1=AH;

同理:EE1=BH,

∴AB=AH-BH=DD1-EE1

【解析】(1)由四邊形CADF、CBEG是正方形,可得AD=CA,∠DAC=∠ABC=90°,又由同角的余角相等,求得∠=∠CAB,然后利用AAS證得△≌△CAB,根據(jù)全等三角形的對(duì)應(yīng)邊相等,即可得;

(2)首先過(guò)點(diǎn)C作CH⊥AB于H,由⊥AB,可得∠∠CHA=90°,由四邊形CADF是正方形,可得AD=CA,又由同角的余角相等,求得∠=∠CAH,然后利用AAS證得△≌△CAH,根據(jù)全等三角形的對(duì)應(yīng)邊相等,即可得DD1=AH,同理EE1=BH,則可得

(3)證明方法同(2),易得

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖9所示,已知:∠α、線(xiàn)段a,求作等腰三角形△ABC,使腰長(zhǎng)AB=a,底角∠A=∠α.(要求寫(xiě)出作法,并保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•黃石)如圖1所示,已知直線(xiàn)y=kx+m與x軸、y軸分別交于點(diǎn)A、C兩點(diǎn),拋物線(xiàn)y=-x2+bx+c經(jīng)過(guò)A、C兩點(diǎn),點(diǎn)B是拋物線(xiàn)與x軸的另一個(gè)交點(diǎn),當(dāng)x=-
1
2
時(shí),y取最大值
25
4

(1)求拋物線(xiàn)和直線(xiàn)的解析式;
(2)設(shè)點(diǎn)P是直線(xiàn)AC上一點(diǎn),且S△ABP:S△BPC=1:3,求點(diǎn)P的坐標(biāo);
(3)直線(xiàn)y=
1
2
x+a與(1)中所求的拋物線(xiàn)交于點(diǎn)M、N,兩點(diǎn),問(wèn):
①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.
②猜想當(dāng)∠MON>90°時(shí),a的取值范圍.(不寫(xiě)過(guò)程,直接寫(xiě)結(jié)論)
(參考公式:在平面直角坐標(biāo)系中,若M(x1,y1),N(x2,y2),則M、N兩點(diǎn)之間的距離為|MN|=
(x2-x1)2+(y2-y1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•義烏市)如圖1所示,已知y=
6
x
(x>0)圖象上一點(diǎn)P,PA⊥x軸于點(diǎn)A(a,0),點(diǎn)B坐標(biāo)為(0,b)(b>0),動(dòng)點(diǎn)M是y軸正半軸上B點(diǎn)上方的點(diǎn),動(dòng)點(diǎn)N在射線(xiàn)AP上,過(guò)點(diǎn)B作AB的垂線(xiàn),交射線(xiàn)AP于點(diǎn)D,交直線(xiàn)MN于點(diǎn)Q連接AQ,取AQ的中點(diǎn)為C.
(1)如圖2,連接BP,求△PAB的面積;
(2)當(dāng)點(diǎn)Q在線(xiàn)段BD上時(shí),若四邊形BQNC是菱形,面積為2
3
,求此時(shí)P點(diǎn)的坐標(biāo);
(3)當(dāng)點(diǎn)Q在射線(xiàn)BD上時(shí),且a=3,b=1,若以點(diǎn)B,C,N,Q為頂點(diǎn)的四邊形是平行四邊形,求這個(gè)平行四邊形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1所示為一上面無(wú)蓋的正方體紙盒,現(xiàn)將其剪開(kāi)展成平面圖,如圖2精英家教網(wǎng)所示.已知展開(kāi)圖中每個(gè)正方形的邊長(zhǎng)為1.
(1)求在該展開(kāi)圖中可畫(huà)出最長(zhǎng)線(xiàn)段的長(zhǎng)度這樣的線(xiàn)段可畫(huà)幾條?
(2)試比較立體圖中∠BAC與平面展開(kāi)圖中∠B′A′C′的大小關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1所示,已知在△ABC和△DEF中,AB=EF,∠B=∠E,EC=BD
(1)試說(shuō)明:△ABC≌△FED;
(2)若圖形經(jīng)過(guò)平移和旋轉(zhuǎn)后得到圖2,且有∠EDB=25°,∠A=66°,試求∠AMD的度數(shù);
(3)將圖形繼續(xù)旋轉(zhuǎn)后得到圖3,此時(shí)D,B,F(xiàn)三點(diǎn)在同一條直線(xiàn)上,若DB=2DF,連接EB,已知△EFB的面積為5cm2,你能求出四邊形ABED的面積嗎?若能,請(qǐng)求出來(lái);若不能,請(qǐng)你說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案