如圖,在等邊三角形△ABC中,AQ=PQ,PR⊥AB于點(diǎn)R,PS⊥AC于點(diǎn)S,且PR=PS,下面給出的四個(gè)結(jié)論:①點(diǎn)P在∠A的平分線上,②AS=AR,③QP∥AR,④△BRP≌△QSP,則其中正確的是(  )
分析:根據(jù)角平分線性質(zhì)即可推出①,根據(jù)勾股定理即可推出AR=AS,根據(jù)等腰三角形性質(zhì)推出∠QAP=∠QPA,推出∠QPA=∠BAP,根據(jù)平行線判定推出QP∥AB即可;求出PQ=CP=BP,根據(jù)AAS推出△BRP≌△QSP即可.
解答:解:∵PR⊥AB于點(diǎn)R,PS⊥AC,PR=PS,
∴點(diǎn)P在∠A的平分線上,∴①正確;
∴∠QAP=∠BAP,
在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2-PR2,AS2=AP2-PS2,
∵AP=AP,PR=PS,
∴AR=AS,∴②正確;
∵AQ=QP,
∴∠QAP=∠QPA,
∵∠QAP=∠BAP,
∴∠QPA=∠BAP,
∴QP∥AR,∴③正確;
∵△ABC是等邊三角形,
∴∠B=∠CAB=60°,AB=AC,
∵∠QAP=∠BAP,
∴BP=CP,
∵QP∥AB,
∴∠QPC=∠B=60°=∠C,
∴PQ=CQ,
∴△PQC是等邊三角形,
∴PQ=CP=BP,∠SQP=60°=∠B,
∵PR⊥AB,PS⊥AC,
∴∠BRP=∠PSQ=90°,
在△BRP和△QSP中
∠BRP=∠PSQ
∠B=∠SQP
BP=PQ

∴△BRP≌△QSP,∴④正確;
故選A.
點(diǎn)評(píng):本題考查了等邊三角形的性質(zhì)和判定,全等三角形的性質(zhì)和判定,平行線的性質(zhì)和判定,角平分線性質(zhì)的應(yīng)用,主要考查學(xué)生的推理能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在等邊三角形ABC的邊BC、AC上分別取點(diǎn)D、E,使BD=CE,AD與BE相交于點(diǎn)P.則∠APE的度數(shù)為
 
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、如圖,在等邊三角形ABC中,三條中線AE,BD,CF相交于點(diǎn)O,則等邊三角形ABC中,從△BOF到△COD需要經(jīng)過(guò)的變換是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在等邊三角形ABC中,BD⊥BC,過(guò)A作AD⊥BD于D,已知△ABC周長(zhǎng)為M,則AD=( 。
A、
M
2
B、
M
6
C、
M
8
D、
M
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等邊三角形ABC的AC邊上取中點(diǎn)D,BC的延長(zhǎng)線上取一點(diǎn)E,使CE=CD,求證:△BDE為等腰三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案