【題目】已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個交點,現(xiàn)有以下四個結(jié)論:
①該拋物線的對稱軸在y軸左側(cè);
②關于x的方程ax2+bx+c+2=0無實數(shù)根;
③a﹣b+c≥0;
的最小值為3.
其中,正確結(jié)論的個數(shù)為( )
A.1個
B.2個
C.3個
D.4個

【答案】D
【解析】解:∵b>a>0
∴﹣ <0,
所以①正確;
∵拋物線與x軸最多有一個交點,
∴b2﹣4ac≤0,
∴關于x的方程ax2+bx+c+2=0中,△=b2﹣4a(c+2)=b2﹣4ac﹣8a<0,
所以②正確;
∵a>0及拋物線與x軸最多有一個交點,
∴x取任何值時,y≥0
∴當x=﹣1時,a﹣b+c≥0;
所以③正確;
當x=﹣2時,4a﹣2b+c≥0
a+b+c≥3b﹣3a
a+b+c≥3(b﹣a)
≥3
所以④正確.
故選:D.
從拋物線與x軸最多一個交點及b>a>0,可以推斷拋物線最小值最小為0,對稱軸在y軸左側(cè),并得到b2﹣4ac≤0,從而得到①②為正確;由x=﹣1及x=﹣2時y都大于或等于零可以得到③④正確.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為4的正方形,在正方形的一個角上剪去長方形CEFG,其中E,G分別是邊CD,BC上的點,且CE=3,CG=2,剩余部分是六邊形ABGFED,請你建立適當?shù)闹苯亲鴺讼登罅呅蜛BGFED各頂點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】填空完成推理過程:

如圖,ADBC于點D,EGBC于點G,AD平分∠BA C. 求證: E=1.

證明: ADBC于點DEGBC于點G,(已知)

∴∠ADC=EGC=90°,(垂直的定義)

ADEG,(    )

∴∠1=     ,(      )

E=3,(兩直線平行,同位角相等)

AD平分∠BAC,(已知)

∴∠2=3,(     )

∴∠E=1.(等量代換)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4 cmAD=12 cm,點PAD邊上以每秒1 cm的速度從點A向點D運動,點QBC邊上,以每秒4 cm的速度從點C出發(fā),在CB往返運動,兩個點同時出發(fā),當點P到達點D時停止(同時點Q也停止),在這段時間內(nèi),當運動時間=_____時線段PQ∥AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各式計算正確的是( )

A. 7-2×(-)=5×(-)=-1 B. -3÷7×=-3÷1=-3

C. -32-(-3)2=-9-9=-18 D. 3×23-2×9=3×6-18=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠BAD的平分線與∠ADC的平分線相交于點E,∠ABC的平分線與∠BCD的平分線相交于點F,則∠E與∠F的數(shù)量關系是__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下面各題
(1)化簡:a(a﹣2b)+(a+b)2
(2)解不等式組 ,并把解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一種商品的標準價格是200元,但隨著季節(jié)的變化,商品的價格可浮動,想一想.

的含義是什么?

請你計算出該商品的最高價格和最低價格;

如果以標準價為標準,超過標準價記“”,低于標準價記“”,該商品價格的浮動范圍又可以怎樣表示?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中AB=AC=4,∠C=72°,D是AB中點,點E在AC上,DE⊥AB,則cosA的值為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案