【題目】如圖所示:在△ABC中,AB=AC=5,BC=8,D,E分別為BC.AB邊上一點(diǎn),∠ADE=∠C,
(1)求證:AD2=AEAB;
(2)∠ADC與∠BED是否相等?請說明理由;
(3)若CD=2,求AD的長.
【答案】(1)證明見解析;(2)∠ADC=∠BED,理由見解析;(3)AD=2.
【解析】
(1)證明△DAE∽△BAD,根據(jù)相似三角形的性質(zhì)證明;
(2)根據(jù)三角形的外角的性質(zhì)、等腰三角形的性質(zhì)證明;
(3)證明△ADC∽△DEB,根據(jù)相似三角形的性質(zhì)求出BE,代入(1)的結(jié)論計(jì)算即可.
(1)∵∠ADE=∠C,∠DAE=∠BAD,
∴△DAE∽△BAD,
∴ = ,即AD2=AEAB
(2)∠ADC=∠DAE+∠B,∠BED=∠DAE+∠ADE,
∵AB=AC,
∴∠B=∠C,
∴∠ADC=∠BED
(3)∵∠ADC=∠BED,∠B=∠C,
∴△ADC∽△DEB,
∴ = ,
即 = ,
解得,BE=2.4,
由(1)得,AD2=AEAB=12,
則AD=2
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)(a<0)圖象與x軸的交點(diǎn)A、B的橫坐標(biāo)分別為﹣3,1,與y軸交于點(diǎn)C,下面四個結(jié)論:
①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函數(shù)圖象上的兩點(diǎn),則y1>y2;③a=﹣c;④若△ABC是等腰三角形,則b=﹣.其中正確的有______(請將結(jié)論正確的序號全部填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=α,AC、BD交于M
(1)如圖1,當(dāng)α=90°時,∠AMD的度數(shù)為 °
(2)如圖2,當(dāng)α=60°時,∠AMD的度數(shù)為 °
(3)如圖3,當(dāng)△OCD繞O點(diǎn)任意旋轉(zhuǎn)時,∠AMD與α是否存在著確定的數(shù)量關(guān)系?如果存在,請你用表示∠AMD,并圖3進(jìn)行證明;若不確定,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),已知點(diǎn),將繞坐標(biāo)原點(diǎn)旋轉(zhuǎn)90°到,則點(diǎn)的坐標(biāo)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某市市民晚飯后1小時內(nèi)的生活方式,調(diào)查小組設(shè)計(jì)了“閱讀”、“鍛煉”、“看電視”和“其它”四個選項(xiàng),用隨機(jī)抽樣的方法調(diào)查了該市部分市民,并根據(jù)調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖.
根據(jù)統(tǒng)計(jì)圖所提供的信息,解答下列問題:
(1)本次共調(diào)查了________名市民;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該市共有480萬市民,估計(jì)該市市民晚飯后1小時內(nèi)鍛煉的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=x-3與反比例函數(shù)y=的圖象相交于點(diǎn)A(4,n),與x軸相交于點(diǎn)B.
(1)填空:n的值為 ,k的值為 ;
(2)以AB為邊作菱形ABCD,使點(diǎn)C在x軸正半軸上,點(diǎn)D在第一象限,求點(diǎn)D的坐標(biāo);
(3)觀察反比函數(shù)y=的圖象,當(dāng)y≥-2時,請直接寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)的某種產(chǎn)品按質(zhì)量分為10個檔次,第1檔次(最低檔次)的產(chǎn)品一天能生產(chǎn)95件,每件利潤6元.每提高一個檔次,每件利潤增加2元,但一天產(chǎn)量減少5件.
(1)若生產(chǎn)第檔次的產(chǎn)品一天的總利潤為元(其中為正整數(shù),且1≤≤10),求出關(guān)于的函數(shù)關(guān)系式;
(2)若生產(chǎn)第x檔次的產(chǎn)品一天的總利潤為1120元,求該產(chǎn)品的質(zhì)量檔次.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù) y=nx+2(n≠0)的圖像與反比例函數(shù) y (m≠0)在第一象限內(nèi)的圖像交于點(diǎn) A,與 x 軸交于點(diǎn) B,線段 OA=5,C 為 x 軸正半軸上一點(diǎn),且 sin AOC .
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△ AOB 的面積;
(3)請直接寫出不等式 nx 2 的解.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com