【題目】如圖,拋物線y=ax2+bx過A(4,0),B(1,3)兩點,點C、B關(guān)于拋物線的對稱軸對稱,過點B作直線BHx軸,交x軸于點H.

(1)求拋物線的表達式;

(2)直接寫出點C的坐標(biāo),并求出ABC的面積;

(3)點P是拋物線上一動點,且位于第四象限,當(dāng)ABP的面積為6時,求出點P的坐標(biāo);

(4)若點M在直線BH上運動,點N在x軸上運動,當(dāng)以點C、M、N為頂點的三角形為等腰直角三角形時,請直接寫出此時CMN的面積.

【答案】(1)y=﹣x2+4x;(2)3;(3)(5,﹣5);(4)CMN的面積為:或17或5.

【解析】

試題分析:(1)利用待定系數(shù)法求二次函數(shù)的表達式;(2)根據(jù)二次函數(shù)的對稱軸x=2寫出點C的坐標(biāo)為(3,3),根據(jù)面積公式求ABC的面積;(3)因為點P是拋物線上一動點,且位于第四象限,設(shè)出點P的坐標(biāo)(m,﹣m2+4m),利用差表示ABP的面積,列式計算求出m的值,寫出點P的坐標(biāo);(4)分別以點C、M、N為直角頂點分三類進行討論,利用全等三角形和勾股定理求CM或CN的長,利用面積公式進行計算.

試題解析:(1)把點A(4,0),B(1,3)代入拋物線y=ax2+bx中,

解得:,

拋物線表達式為:y=﹣x2+4x;

(2)點C的坐標(biāo)為(3,3),

點B的坐標(biāo)為(1,3),

BC=2,

SABC= ×2×3=3;

(3)過P點作PDBH交BH于點D,

設(shè)點P(m,﹣m2+4m),

根據(jù)題意,得:BH=AH=3,HD=m2﹣4m,PD=m﹣1,

SABP=SABH+S四邊形HAPD﹣SBPD

6=×3×3+(3+m﹣1)(m2﹣4m)﹣(m﹣1)(3+m2﹣4m),

3m2﹣15m=0,

m1=0(舍去),m2=5,

點P坐標(biāo)為(5,﹣5).

(4)以點C、M、N為頂點的三角形為等腰直角三角形時,分三類情況討論:

以點M為直角頂點且M在x軸上方時,如圖2,CM=MN,CMN=90°,

CBM≌△MHN,

BC=MH=2,BM=HN=3﹣2=1,

M(1,2),N(2,0),

由勾股定理得:MC=,

SCMN=××=

以點M為直角頂點且M在x軸下方時,如圖3,作輔助線,構(gòu)建如圖所示的兩直角三角形:RtNEM和RtMDC,

得RtNEMRtMDC,

EM=CD=5,MD=ME=2,

由勾股定理得:CM= =,

SCMN=××=

以點N為直角頂點且N在y軸左側(cè)時,如圖4,CN=MN,MNC=90°,作輔助線,

同理得:CN= =,

SCMN=××=17;

以點N為直角頂點且N在y軸右側(cè)時,作輔助線,如圖5,同理得:CN==,

SCMN=××=5;

以C為直角頂點時,不能構(gòu)成滿足條件的等腰直角三角形;

綜上所述:CMN的面積為: 或17或5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)發(fā)現(xiàn):

如圖1,點A為線段BC外一動點,且BC=a,AB=b

填空:當(dāng)點A位于     時,線段AC的長取得最大值,且最大值為     (用含ab的式子表示)

(2)應(yīng)用:

A為線段BC外一動點,且BC=3,AB=1,如圖2所示,分別以ABAC為邊,作等邊三角形ABD和等邊三角形ACE,連接CDBE

①請找出圖中與BE相等的線段,并說明理由;

②直接寫出線段BE長的最大值.

(3)拓展:

如圖3,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(2,0),點B的坐標(biāo)為(5,0),點P為線段AB外一動點,且PA=2,PM=PB,∠BPM=90°,請直接寫出線段AM長的最大值及此時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=(m+1)x|m|是正比例函數(shù),則該函數(shù)的圖象經(jīng)過第象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點B、E、C、F在一條直線上,AB=DF,AC=DE,A=D.

(1)求證:ACDE;

(2)BF=13,EC=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)圍繞一點拼在一起的某種正多邊形內(nèi)角之和恰好是______,就能鋪滿地面(  )

A. 45° B. 90° C. 180° D. 360°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AD⊥EF,CE⊥EF,∠2+∠3=180°.
(1)請你判斷∠1與∠BDC的數(shù)量關(guān)系,并說明理由;
(2)若∠1=70°,DA平分∠BDC,試求∠FAB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小華家距離縣城15km,星期天8:00,小華騎自行車從家出發(fā),到縣城購買學(xué)習(xí)用品,小華與縣城的距離y(km)與騎車時間x(h)之間的關(guān)系如圖所示,給出以下結(jié)論:①小華騎車到縣城的速度是15km/h;②小華騎車從縣城回家的速度是13km/h;③小華在縣城購買學(xué)習(xí)用品用了1h;④B點表示經(jīng)過 h,小華與縣城的距離為15km(即小華回到家中),其中正確的結(jié)論有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以等邊三角形ABC的BC邊為直徑畫半圓,分別交AB、AC于點E、D,DF是圓的切線,過點F作BC的垂線交BC于點G.

(1)求證:DFAB;

(2)若AF的長為2,求FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:AB∥CD,不添加輔助線,試再添加一個條件,使∠1=∠2成立.
(1)寫出兩個答案;
(2)選擇其中一個加以證明.

查看答案和解析>>

同步練習(xí)冊答案