【題目】已知:如圖,在矩形ABCD中,點E,F(xiàn)分別在AB,CD邊上,BE=DF,連接CE,AF.求證:AF=CE.
【答案】證明:∵四邊形ABCD是矩形, ∴DC∥AB,DC=AB,
∴CF∥AE,
∵DF=BE,
∴CF=AE,
∴四邊形AFCE是平行四邊形,
∴AF=CE.
【解析】根據(jù)矩形的性質(zhì)得出DC∥AB,DC=AB,求出CF=AE,CF∥AE,根據(jù)平行四邊形的判定得出四邊形AFCE是平行四邊形,即可得出答案.
【考點精析】關(guān)于本題考查的平行四邊形的判定與性質(zhì)和矩形的性質(zhì),需要了解若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積;矩形的四個角都是直角,矩形的對角線相等才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某化工廠與A,B兩地有公路和鐵路相連,這家工廠從A地購買一批每噸1 000元的原料運回工廠,制成每噸8 000元的產(chǎn)品運到B地.已知公路運價為1.5元/(噸千米),鐵路運價為1.2元/(噸千米),這兩次運輸共支出公路運費15 000元,鐵路運費97200元.
(1)求化工廠從A地購買這批原料及利用這批原料生產(chǎn)的產(chǎn)品各多少噸?
(2)計算這批產(chǎn)品的銷售款比原料費和運輸費的和多多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,點D是AB的中點,DE⊥BC,垂足為點E,連接CD.
(1)如圖1,DE與BC的數(shù)量關(guān)系是;
(2)如圖2,若P是線段CB上一動點(點P不與點B,C重合),連接DP,將線段DP繞點D逆時針旋轉(zhuǎn)60°,得到線段DF,連接BF,請猜想DE、BF、BP三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若點P是線段CB延長線上一動點,按照(2)中的作法,請在圖3中補全圖形,并直接寫出DE、BF、BP三者之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】給出下列各數(shù):2,﹣3,﹣0.56,﹣11,35,0.618,﹣125,+2.5,﹣136,﹣2.333,0,其中負數(shù)有( 。
A. 4個 B. 5個 C. 6個 D. 7個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=BC,對角線BD平分∠ABC,P是BD上一點,過點P作PM⊥AD,PN⊥CD,垂足分別為M,N.
(1)求證:∠ADB=∠CDB;
(2)若∠ADC=90°,求證:四邊形MPND是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB和CD相交于點O,∠DOE=90°,若∠BOE= ∠AOC.
(1)指出與∠BOD相等的角,并說明理由;
(2)求∠BOD,∠AOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】河流兩岸a、b互相平行,C、D是河岸a上間隔50m的兩個電線桿.某人在河岸b上的A處測得∠DAB=30°,然后沿河岸走了100m到達B處,測得∠CBF=60°,求河流的寬度CF的值(結(jié)果精確到個位).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com