【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD于點E,DA平分∠BDE.
(1)求證:AE是⊙O的切線;
(2)如果AB=4,AE=2,求⊙O的半徑.
【答案】
【1】 證明:邊結(jié)OA,
∵OA=OD,∴∠1=∠2.
∵DA平分,∴∠2=∠3.
∴∠1=∠3.∴OA∥DE.
∴∠OAE=∠4,[
∵,∴∠4=90°.∴∠OAE=90°,即OA⊥AE.
又∵點A在⊙O上,∴AE是⊙O的切線.
【2】 ∵BD是⊙O的直徑,∴∠BAD=90°.
∵∠5=90°,∴∠BAD=∠5.
又∵∠2=∠3,∴△BAD∽△AED.∴
∵BA=4,AE=2,∴BD=2AD.
在Rt△BAD中,根據(jù)勾股定理,得BD=.
∴⊙O半徑為.
【解析】
試題(1)連接OA,利用已知首先得出OA∥DE,進(jìn)而證明OA⊥AE就能得到AE是⊙O的切線;
(2)通過證明△BAD∽△AED,再利用對應(yīng)邊成比例關(guān)系從而求出⊙O半徑的長.
試題解析:(1)連接OA,
∵OA=OD,
∴∠1=∠2.
∵DA平分∠BDE,
∴∠2=∠3.
∴∠1=∠3.∴OA∥DE.
∴∠OAE=∠4,
∵AE⊥CD,∴∠4=90°.
∴∠OAE=90°,即OA⊥AE.
又∵點A在⊙O上,
∴AE是⊙O的切線.
(2)∵BD是⊙O的直徑,
∴∠BAD=90°.
∵∠5=90°,∴∠BAD=∠5.
又∵∠2=∠3,∴△BAD∽△AED.
∴,
∵BA=4,AE=2,∴BD=2AD.
在Rt△BAD中,根據(jù)勾股定理,
得BD=.
∴⊙O半徑為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定這個四邊形是平行四邊形的是
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一座人行天橋的示意圖,天橋的高度是10米,CB⊥DB,坡面AC的傾斜角為45°.為了方便行人推車過天橋,市政部門決定降低坡度,使新坡面DC的坡度為i=:3.若新坡角下需留3米寬的人行道,問離原坡角(A點處)10米的建筑物是否需要拆除?(參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=DB,∠1=∠2,請問添加下面哪個條件不能判斷△ABC≌△DBE的是( )
A. BC=BE B. ∠A=∠D C. ∠ACB=∠DEB D. AC=DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,的平分線AD交BC于點D,的兩邊分別與AB、AC相交于M、N兩點,且,若,則四邊形AMDN的面積為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上點與點之間的距的距離為個單位長度,點在原點的左側(cè),到原點的距離為個單位長度,點在點的右側(cè),點表示的數(shù)與點表示的數(shù)互為相反數(shù),動點從點出發(fā),以每秒個單位長度的速度向點移動,設(shè)移動時間為秒.
(1)點表示的數(shù)為 ,點表示的數(shù)為 ,點表示的數(shù)為 .
(2)用含的代數(shù)式分別表示點到點和點的距離: , .
(3)當(dāng)點運動到點時,點從點出發(fā),以每秒個單位長度的速度向點運動,點到達(dá)點后,立即以同樣的速度返回點,在點開始運動后,當(dāng)兩點之間的距離為個單位長度時,求此時點表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個頂點的位置如圖所示
(1)請畫出△ABC關(guān)于y軸對稱的△A′B′C′;(其中A′、B′、C′分別是A、B、C的對應(yīng)點,不寫畫法)
(2)直接寫出A′B′C′三點的坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)有一本零錢記賬本,上面記載著某一周初始零錢為100元,周一到周五的收支情況如下(記收入為+,單位:元):
+25,-15.5,-23,-17,+26
(1)這周末他可以支配的零錢為幾元?
(2)若他周六用了元購得2本書,周日他爸爸給了他10元買早飯,但他實際用了15元,恰好用完了所有的零錢,求的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AOBC的頂點O(0,0),A(﹣1,2),點B在x軸正半軸上按以下步驟作圖:①以點O為圓心,適當(dāng)長度為半徑作弧,分別交邊OA,OB于點D,E;②分別以點D,E為圓心,大于DE的長為半徑作弧,兩弧在∠AOB內(nèi)交于點F;③作射線OF,交邊AC于點G,則點G的坐標(biāo)為( )
A. (﹣1,2) B. (,2) C. (3﹣,2) D. (﹣2,2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com