【題目】請在圖中補全坐標系及缺失的部分,并在橫線上寫恰當?shù)膬?nèi)容.圖中各點坐標如下:A(1,0),B(6,0),C(1,3),D(6,2).線段AB上有一點M,使△ACM∽△BDM,且相似比不等于1.求出點M的坐標并證明你的結(jié)論.
M( , )
證明:∵CA⊥AB,DB⊥AB
∴∠CAM=∠DBM=度.
∵CA=AM=3,DB=BM=2
∴∠ACM=∠AMC(),∠BDM=∠BMD(同理),
∴∠ACM= (180°﹣)=45°.∠BDM=45°(同理).
∴∠ACM=∠BDM
在△ACM與△BDM中,
∠CAM=∠DBM
∴△ACM∽△BDM(如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似)
【答案】4;0;90;等邊對等角;90°;
【解析】解:如圖所示:
當△ACM∽△BDM時, = ,解得AM=3,則M( 4,0).
理由如下:
∵CA⊥AB,DB⊥AB
∴∠CAM=∠DBM=90度.
∵CA=AM=3,DB=BM=2
∴∠ACM=∠AMC( 等邊對等角),∠BDM=∠BMD(同理),
∴∠ACM= (180°﹣90°)=45°.∠BDM=45°(同理).
∴∠ACM=∠BDM
在△ACM與△BDM中,
,
∴△ACM∽△BDM(如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似)
【考點精析】解答此題的關(guān)鍵在于理解相似三角形的性質(zhì)的相關(guān)知識,掌握對應角相等,對應邊成比例的兩個三角形叫做相似三角形.
科目:初中數(shù)學 來源: 題型:
【題目】做大小兩個長方體紙盒,尺寸如下(單位:cm)
(1)做這兩個紙盒共用料多少cm2?
(2)做大紙盒比做小紙盒多用料多少cm2?
(3)如果a=8,b=6,c=5,將24個小紙盒包裝成一個長方體,這個長方體的表面積的最小值為________cm2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有下列4個命題: ①方程x2﹣( + )x+ =0的根是 和 .
②在△ABC中,∠ACB=90°,CD⊥AB于D.若AD=4,BD= ,則CD=3.
③點P(x,y)的坐標x,y滿足x2+y2+2x﹣2y+2=0,若點P也在y= 的圖象上,則k=﹣1.
④若實數(shù)b、c滿足1+b+c>0,1﹣b+c<0,則關(guān)于x的方程x2+bx+c=0一定有兩個不相等的實數(shù)根,且較大的實數(shù)根x0滿足﹣1<x0<1.
上述4個命題中,真命題的序號是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結(jié)論:
①b2>4ac;
②abc>0;
③2a﹣b=0;
④8a+c<0;
⑤9a+3b+c<0.
其中結(jié)論正確的是 . (填正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線y= x﹣2與x、y軸分別交于點A、C.拋物線的圖象經(jīng)過A、C和點B(1,0).
(1)求拋物線的解析式;
(2)在直線AC上方的拋物線上有一動點D,當D與直線AC的距離DE最大時,求出點D的坐標,并求出最大距離是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的對角線BD、AC分別為2、2 ,以B為圓心的弧與AD、DC相切,則陰影部分的面積是( 。
A.2 ﹣ π
B.4 ﹣ π
C.4 ﹣π
D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】水源村在今年退耕還林活動中,計劃植樹200畝,全村在完成植樹40畝后,某環(huán)保組織加入村民植樹活動,并且該環(huán)保組織植樹的速度是全村植樹速度的1.5倍,整個植樹過程共用了13天完成.
(1)全村每天植樹多少畝?
(2)如果全村植樹每天需2000元工錢,環(huán)保組織是義務植樹,因此實際工錢比計劃節(jié)約多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在2013年“崇左市初中畢業(yè)升學體育考試”測試中,參加男子擲實心球的10名考生的成績記錄如下(單位:米):7.5、6.5、8.2、7.8、8.8、8.2、8.6、8.2、8.5、9.5,則該組數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù)依次分別是( )
A.8.2、8.0、7.5
B.8.2、8.5、8.1
C.8.2、8.2、8.15
D.8.2、8.2、8.18
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】溫州享有“中國筆都”之稱,其產(chǎn)品暢銷全球,某制筆企業(yè)欲將n件產(chǎn)品運往A,B,C三地銷售,要求運往C地的件數(shù)是運往A地件數(shù)的2倍,各地的運費如圖所示.設安排x件產(chǎn)品運往A地.
(1)當n=200時,①根據(jù)信息填表:
A地 | B地 | C地 | 合計 | |
產(chǎn)品件數(shù)(件) | x | 2x | 200 | |
運費(元) | 30x |
②若運往B地的件數(shù)不多于運往C地的件數(shù),總運費不超過4000元,則有哪幾種運輸方案?
(2)若總運費為5800元,求n的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com