精英家教網(wǎng)如圖,有一塊直角三角形紙片,∠C=90°,AC=4cm,BC=3cm,將斜邊AB翻折,使點(diǎn)B落在直角邊AC的延長(zhǎng)線上的點(diǎn)E處,折痕為AD,則CD的長(zhǎng)為
 
分析:易求AB=5,則CE=1.設(shè)CD=x,則ED=DB=3-x.根據(jù)勾股定理求解.
解答:解:∵∠C=90°,AC=4,BC=3,
∴AB=5.
根據(jù)題意,AE=AB=5,ED=BD.
∴CE=1.
設(shè)CD=x,則ED=3-x.
根據(jù)勾股定理得
x2+12=(3-x)2,解得x=
4
3
.即CD長(zhǎng)為
4
3
點(diǎn)評(píng):本題考查圖形的翻折變換,解題過程中應(yīng)注意折疊前后的對(duì)應(yīng)相等關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm.現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,則CD等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

3、如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿著直線AD折疊,使它落在斜邊AB上,且與AE重合,則CD的長(zhǎng)為
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖,有一塊直角三角形紙片,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,則點(diǎn)C與斜邊AB的中點(diǎn)E正好重合,且BD=8cm,則AD的長(zhǎng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角三角形紙片沿直線AD折疊,使點(diǎn)C恰好落在斜邊AB上點(diǎn)E處.
(1)求AB的長(zhǎng);
(2)直接寫出AE、BE的長(zhǎng)及∠BED的度數(shù);
(3)求CD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案