【題目】已知如圖,DE是△ABC的中位線,點(diǎn)P是DE的中點(diǎn),CP的延長(zhǎng)線交AB于點(diǎn)Q,那么S△CPE:S△ABC=_____.
【答案】1:8.
【解析】
連結(jié)AP并延長(zhǎng)交BC于點(diǎn)F,則S△CPE=S△AEP,可得S△CPE:S△ADE=1:2,由DE//BC可得△ADE∽△ABC,可得S△ADE:S△ABC=1:4,則S△CPE:S△ABC=1:8.
解:連結(jié)AP并延長(zhǎng)交BC于點(diǎn)F,
∵DE是△ABC的中位線,
∴E是AC的中點(diǎn),
∴S△CPE=S△AEP,
∵點(diǎn)P是DE的中點(diǎn),
∴S△AEP=S△ADP,
∴S△CPE:S△ADE=1:2,
∵DE是△ABC的中位線,
∴DE∥BC,DE:BC=1:2,
∴△ADE∽△ABC,
∴S△ADE:S△ABC=1:4,
∴S△CPE:S△ABC=1:8.
故答案為1:8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,CE平分∠ACB交⊙O于E,交AB于點(diǎn)D,連接AE,∠E=30°,AC=5.
(1)求CE的長(zhǎng);
(2)求S△ADC:S△ACE的比值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在菱形中,,點(diǎn)是射線上一動(dòng)點(diǎn),以為邊向右側(cè)作等邊,點(diǎn)的位置隨點(diǎn)的位置變化而變化.
(1)如圖1,當(dāng)點(diǎn)在菱形內(nèi)部或邊上時(shí),連接,與的數(shù)量關(guān)系是 ,與的位置關(guān)系是 ;
(2)當(dāng)點(diǎn)在菱形外部時(shí),(1)中的結(jié)論是否還成立?若成立,請(qǐng)予以證明;若不成立,
請(qǐng)說(shuō)明理由(選擇圖2,圖3中的一種情況予以證明或說(shuō)理).
(3) 如圖4,當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),連接,若 , ,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+x+c交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C.直線y=﹣+2經(jīng)過(guò)點(diǎn)A,C.
(1)求拋物線的解析式;
(2)點(diǎn)P在拋物線在第一象限內(nèi)的圖象上,過(guò)點(diǎn)P作x軸的垂線,垂足為D,交直線AC于點(diǎn)E,連接PC,設(shè)點(diǎn)P的橫坐標(biāo)為m.
①當(dāng)△PCE是等腰三角形時(shí),求m的值;
②過(guò)點(diǎn)C作直線PD的垂線,垂足為F.點(diǎn)F關(guān)于直線PC的對(duì)稱點(diǎn)為F′,當(dāng)點(diǎn)F′落在坐標(biāo)軸上時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點(diǎn)A(1,m),這兩條直線分別與x軸交于B,C兩點(diǎn).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)直接寫出當(dāng)x>0時(shí),不等式x+b>的解集;
(3)若點(diǎn)P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與y軸的交點(diǎn)為A,拋物線的頂點(diǎn)為.
(1)求出拋物線的解析式;
(2)點(diǎn)P為x軸上一點(diǎn),當(dāng)△PAB的周長(zhǎng)最小時(shí),求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】10月期間,我市慶祝新中國(guó)成立70周年“祖國(guó)萬(wàn)歲”的主題燈光秀展示了兩江四岸流光溢彩的壯美之景.周末,小明和小華相約一起乘輕軌去看燈光秀.已知小明家、輕軌站和小華家順次分布在同一條筆直的公路上.小明、小華打算以各自的速度步行到輕軌站,小明出發(fā)3分鐘后,小華從家里出發(fā),走了兩分鐘,小華想起沒(méi)帶相機(jī),立即掉頭以原速的返回家中取相機(jī),并在家中取停留5分鐘,發(fā)現(xiàn)時(shí)間來(lái)不及便立即打車前住輕軌站,最終比小明早到2分鐘.如圖是兩人之間的距離與小華出發(fā)時(shí)間之間的關(guān)系,則小明家離輕軌站的距離比小華家離輕軌站的距離少_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=x2+(2t﹣2)x+t2﹣2t﹣3與x軸交于A、B兩點(diǎn)(A在B左側(cè)),與y軸交于點(diǎn)C.
(1)如圖1,當(dāng)t=0時(shí),連接AC、BC,求△ABC的面積;
(2)如圖2,在(1)的條件下,若點(diǎn)P為在第四象限的拋物線上的一點(diǎn),且∠PCB+∠CAB=135°,求P點(diǎn)坐標(biāo);
(3)如圖3,當(dāng)﹣1<t<3時(shí),若Q是拋物線上A、C之間的一點(diǎn)(不與A、C重合),直線QA、QB分別交y軸于D、E兩點(diǎn).在Q點(diǎn)運(yùn)動(dòng)過(guò)程中,是否存在固定的t值,使得CE=2CD.若存在,求出t值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校有一露天舞臺(tái),縱斷面如圖所示,AC垂直于地面,AB表示樓梯,AE為舞臺(tái)面,樓梯的坡角∠ABC=45°,坡長(zhǎng)AB=2m,為保障安全,學(xué)校決定對(duì)該樓梯進(jìn)行改造,降低坡度,擬修新樓梯AD,使∠ADC=30°
(1)求舞臺(tái)的高AC(結(jié)果保留根號(hào))
(2)樓梯口B左側(cè)正前方距離舞臺(tái)底部C點(diǎn)3m處的文化墻PM是否要拆除?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com